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Abstract. In this paper, some generalizations and improved versions of classical Erdős-
Lax inequality and Bernstein inequality are stated and proved.

1. Introduction

Let P (z) = c0+
∑n

v=1 cvz
v be a polynomial of degree n and P ′(z) its derivative. The

following inequality, which concerns the norm of the derivative and the polynomial
itself on the unit disc, is classical and known as Bernstein’s inequality:

max
|z|=1

|P ′(z)| ≤ nmax
|z|=1

|P (z)|. (1)

In the literature there are various inequalities, or rather systems of inequalities, that
revolve around the Bernstein inequality. For further details, we refer to [3, 7, 8].

Furthermore, some additional information about P (z) and its zeros, i.e., for the
class of polynomials P (z) that do not vanish in the interior of the unit disc, the
inequality (1) was replaced by:

max
|z|=1

|P ′(z)| ≤ n

2
max
|z|=1

|P (z)|, (2)

and is sharp with equality for the polynomials that have all their zeros on the unit
disc. As is well known, the inequality (2) was conjectured by Erdős and later proved
by Lax [5]. These inequalities are known for various regions of the complex plane
and for various norms, such as weighted Lp-norms, and for many classes of functions,
such as polynomials with various constraints. Here we investigate some new operators
and thereby establish some operator-preserving inequalities such as (1) and (2). In
addition, we will see that the inequalities (1) and (2) preserved by ordinary derivatives
are actually special cases of them.
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2 On Erdős-Lax and Bernstein inequalities for generating operators

Let us now take the set Sn = {z1, z2, . . . , zn} of n complex numbers that are not
necessarily distinct in the complex plane, let {Pk(z)|1 ≤ k ≤ n} denote the sequence
of n polynomials each of degree n− 1 given by:

Pk(z) =

n∏
j=1,j ̸=k

(z − zj).

This term was given by Barrero and Egozcue [2] and called a sequence of “incom-
plete polynomials”. Now we say that the essence of the ordinary derivative of P (z)
normalised to a monic polynomial P (z) of degree n whose zeros are z1, z2, . . . , zn is a
convex linear combination of members of {Pk(z)} in the sense that:

P ′(z) =

n∑
k=1

n∏
j=1,j ̸=k

(z − zj).

Equivalently, the derivative of the monic polynomial P (z) can be expressed as:

1

n
P ′(z) =

n∑
k=1

1

n
Pk(z) (3)

where all coefficients of the convex linear combination are 1
n , and

∑n
k=1

1
n = 1.

Definition 1.1. Let P (z) =
∏n

j=1(z−zj) be a polynomial of degree n and if αk > 0,

1 ≤ k ≤ n with
∑n

k=1 αk = 1, then D(α1,α2,...,αn)P (z) =
∑n

k=1 αkPk(z).
We call this operator “convex generalized derivative or convex derivative of P (z)”.

Note that D(α1,α2,...,αn)P (z) is a polynomial of degree n − 1 in its general form

and ordinary derivative P ′(z) is one such representation, i.e. if αk = 1
n , 1 ≤ k ≤ n,

then D(α1,α2,...,αn)P (z) = 1
nP

′(z).
Now we state the following recently proved result due to Kumar and Dhankar [4]

concerning D(α1,α2,...,αn)P (z) which is the extension of the Theorem of Laguerre.

Theorem 1.2 ([4]). Let P (z) =
∏n

j=1(z − zj) be a polynomial of degree n having no
zeros in the disc |z| < 1. Then the polynomial cP (z) + (α− z)D(α1,α2,...,αn)P (z) has
no zeros in the disc |z| < 1, for all α with |α| < 1 and c ≥ 1.

In the same paper they also established the following result by making the choice
of αk = 1

n , 1 ≤ k ≤ n, in Theorem 1.2.

Theorem 1.3 ([4]). Let P (z) =
∏n

j=1(z − zj) be a polynomial of degree n having no
zeros in the disc |z| < 1. Then the polynomial cP (z) + (α − z)P ′(z) has no zeros in
the disc |z| < 1, for all α with |α| < 1 and c ≥ n.

Definition 1.4. If P (z) is a polynomial of degree n, and α is any complex number,
then

DαP (z) = −
[

P (z)

(z − α)n

]′
(z − α)n+1 = nP (z) + (α− z)P ′(z),

is called the polar derivative of P (z). Note that DαP (z) is a polynomial of degree
at most n− 1 and it generalizes the concept of “ordinary derivative” is evident and
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convincing from the fact that

lim
α→∞

DαP (z)

α
= P ′(z)

uniformly with respect to z for |z| ≤ R, R > 0.

Definition 1.5. Given a polynomial P (z) =
∑n

v=0 cvz
v and Q(z) = zn P

(
1
z

)
=∑n

v=0 cn−vz
v. If P (z) = ζQ(z), where |ζ| = 1, then the polynomial P (z) is said to be

self-inverse.

2. Main results

As we know that P ′(z) is one of the representation of D(α1,α2,...,αn)P (z). In this
connection, we obtain the following result in terms of convex derivative.

Theorem 2.1. Let P (z) =
∏n

j=1(z− zj) be a polynomial of degree n having no zeros
in the disc |z| < 1. Then for c ≥ 1 and |z| = 1:

max
|z|=1

|D(α1,α2,...,αn)P (z)| ≤ c

2
max
|z|=1

|P (z)|. (4)

According to Theorem 1.3 and the choice of αk = 1
n , 1 ≤ k ≤ n, Theorem 2.1

reduces to an interesting result that generalizes inequality (2) as given below.

Corollary 2.2. Let P (z) =
∏n

j=1(z − zj) be a polynomial of degree n having no
zeros in the disc |z| < 1. Then for c ≥ n and |z| = 1:

max
|z|=1

|P ′(z)| ≤ c

2
max
|z|=1

|P (z)|. (5)

Remark 2.3. If c = n, Corollary 2.2 reduces to inequality (2).

Theorem 2.4. If P (z) is a polynomial of degree n and M = max|z|=1 |P (z)|, then

max
|z|=1

|D(α1,α2,...,αn)P (z)| ≤ M

n∑
k=1

αk. (6)

Equality in (6) holds for P (z) = σzn, σ being a non zero complex number.

Remark 2.5. Take αk = 1
n , 1 ≤ k ≤ n in Theorem 2.4 and note (3), we get (1) the

so called Bernstein inequality.

Until now we studied the ordinary derivative as the convex linear combination
of members of {Pk(z)} and there by discussed inequalities between polynomials pre-
served by convex derivatives. Now instead of convex linear combination, we take
simply a linear combination of members of {Pk(z)}. If we choose γk’s such that∑n

k=1 γk = Λ, then for γ = (γ1, γ2, . . . , γn) ∈ Rn
+, we take P γ(z) =

∑n
k=1 γkPk(z),

the generalized derivative of P (z). Note that P γ(z) is a polynomial of degree n − 1
and for γ = (1, 1, . . . , 1): P γ(z) = P ′(z).
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Definition 2.6. If P (z) is a polynomial of degree n, and α is any complex number,
then Dγ

αP (z) = ΛP (z) + (α − z)P γ(z) is called the generalized polar derivative of
P (z) (see [9]). Noting that, for γ = (1, 1, . . . , 1): Dγ

αP (z) = DαP (z). In this paper,
we also add that

lim
α→∞

Dγ
αP (z)

α
= P γ(z)

uniformly with respect to z for |z| ≤ R, R > 0.

Next we prove another generalization of Bernstein’s inequality in terms of P γ(z).
In fact, we prove the following.

Theorem 2.7. If P (z) is a polynomial of degree n, then

max
|z|=1

|P γ(z)| ≤ Λmax
|z|=1

|P (z)|. (7)

Equality in (7) holds for P (z) = σzn, σ being a non zero complex number.

Now we prove the next theorem.

Theorem 2.8. If P (z) is a polynomial of degree n, then for every real or complex
number α with |α| ≥ 1:

max
|z|=1

|Dγ
αP (z)| ≤ Λ|α|max

|z|=1
|P (z)|. (8)

The result is best possible and equality in (8) holds for P (z) = Czn, C ̸= 0.

Remark 2.9. Dividing both sides of inequality (8) by |α| and letting |α| → ∞, we
obtain Theorem 2.7.

Theorem 2.10. If P (z) is a polynomial of degree n such that max|z|=1 |P (z)| = 1 and
P (z) has no zeros in |z| < 1 then for every real or complex number α with |α| ≥ 1:

|Dγ
αP (z)| ≤ Λ

2
{|αzn−1|+ 1}, for |z| ≥ 1. (9)

The result is sharp and equality holds in (9) for the polynomial P (z) = azn + b,
|a| = |b| = 1

2 .

Remark 2.11. For the n-tuple γ = (1, 1, . . . , 1), we obtain the following inequality
from Theorem 2.10 under the same hypothesis as |DαP (z)| ≤ n

2 {|αz
n−1| + 1} and

this inequality is ascribed to Aziz [1].

Remark 2.12. Dividing both sides of inequality (9) by |α| and letting |α| → ∞, we
under the same hypothesis obtain the following inequality |P γ(z)| ≤ Λ

2 , for |z| = 1,
and for n-tuple γ = (1, 1, . . . , 1), we obtain inequality (2) in case max|z|=1 |P (z)| = 1.

Theorem 2.13. If P (z) is a self-inverse polynomial of degree n such that max|z|=1 |P (z)|
= 1 then for every real or complex number α with |α| ≥ 1:

|Dγ
αP (z)| ≤ Λ

2
{|αzn−1|+ 1}, for |z| ≥ 1. (10)

Inequality (10) also holds for |z| ≤ 1 and |α| ≤ 1. Equality in (10) holds for P (z) =
zn+1

2 .
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Theorem 2.14. Let F (z) be a polynomial of degree n having all its zeros in |z| ≤ 1
and P (z) be a polynomial of degree not exceeding that of F (z). If |P (z)| ≤ |F (z)| for
|z| = 1, then for any β ∈ C with |β| ≤ 1:∣∣∣∣zP γ(z)

Λ
+ β

P (z)

2

∣∣∣∣ ≤ ∣∣∣∣zF γ(z)

Λ
+ β

F (z)

2

∣∣∣∣ , for |z| = 1. (11)

One should note that Theorem 2.14 presents a generalization of a result due to
Malik and Vong [6]. For an appropriate choice of the argument of β in (11) and letting
β → 1, we obtain the following corollary.

Corollary 2.15. Under the hypothesis of Theorem 2.14:∣∣∣∣P γ(z)

Λ

∣∣∣∣+ ∣∣∣∣F (z)

2

∣∣∣∣ ≤ ∣∣∣∣F γ(z)

Λ

∣∣∣∣+ ∣∣∣∣P (z)

2

∣∣∣∣ , for |z| = 1. (12)

For F (z) = Mzn, where M = max|z|=1 |P (z)| and β = −1 in (11), we have the
following.

Corollary 2.16. If P (z) is a polynomial of degree at most n, then∣∣∣∣P γ(z)

Λ
− P (z)

2

∣∣∣∣ ≤ 1

2
max
|z|=1

|P (z)|, for |z| = 1, (13)

and equality in (13) holds for P (z) = αzn + β, where |α|+ |β| = 1.

3. Lemmas

The following lemma is due to Barrero and Egozcue [2].

Lemma 3.1 ([2]). Let z1, z2, . . . , zn be n, not necessary distinct, complex numbers.
Then the polynomial D(α1,α2,...,αn)P (z) has all its zeros in or on the convex hull of
the zeros of P (z).

Lemmas 3.2 and 3.3 are ascribed to Rather et al. [10].

Lemma 3.2 ([10]). Every convex set containing all the zeros of P (z) also contains the
zeros of P γ(z) for all γ ∈ Rn

+.

Lemma 3.3 ([10]). If all the zeros of the polynomial P (z) lie in a circular region C
and if ξ is a zero of Dγ

αP (z) for some γ ∈ Rn
+, then at most one of the points ξ and

α may lie outside of C.

Lemmas 3.4 and 3.5 are due to Rather et al. [9].

Lemma 3.4 ([9]). If P (z) is a polynomial of degree n and Q(z) = zn P
(
1
z

)
, then for

|z| = 1: |Qγ(z)| = |ΛP (z)− zP γ(z)| and |P γ(z)| = |ΛQ(z)− zQγ(z)|.

Lemma 3.5 ([9]). If P (z) is a polynomial of degree n having all zeros in |z| ≤ k where

k ≤ 1, then k|P γ(z)| ≥ |Qγ(z)| for |z| = 1, where Q(z) = zn P
(
1
z

)
.
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Lemma 3.6. If P (z) is a polynomial of degree n such that max|z|=1 |P (z)| = 1 and α
is a complex number with |α| ≥ 1, then for |z| ≥ 1

|Dγ
αQ(z)|+ |Dγ

αP (z)| ≤ Λ{|αzn−1|+ 1}, (14)

and |Dγ
αQ(z)|+ |Dγ

αP (z)| ≤ Λ{|αzn−1|+ 1}, (15)

for |α| ≤ 1, |z| ≤ 1,where Q(z) = zn P
(
1
z

)
.

Proof. According to Rouche’s theorem, the polynomial F (z) = P (z) − βzn has all
its zeros in |z| < 1 for any complex number β satisfying |β| > 1. Therefore, the
polynomial

T (z) = zn F

(
1

z

)
= zn P

(
1

z

)
− β = Q(z)− β

has no zeros in |z| ≤ 1 and according to the maximum modulus principle |T (z)| ≤
|F (z)|, for |z| ≥ 1.

From Rouche’s theorem it follows again that for every µ, |µ| > 1, the polynomial
T (z) − µF (z) has all zeros in |z| < 1, which according to Lemma 3.3 implies by
the assumption of C = |z| < 1, that for every complex number α with |α| ≥ 1 the
polynomial Dγ

α[T (z)− µF (z)] has all its zeros in |z| < 1, this results in

|Dγ
αT (z)| ≤ |Dγ

αF (z)|, for |z| ≥ 1. (16)

Therefore, it follows from (16) that

|Dγ
αQ(z)− Λβ| ≤ |Dγ

αP (z)− βΛαzn−1|, for |z| ≥ 1. (17)

Now the inequality (8), which also applies to |z| ≥ 1, shows that

max
|z|=1

|Dγ
αP (z)| ≤ Λ|α|max

|z|=1
|P (z)|. (18)

With respect to (18), we can choose an argument of β in (17) such that for |z| ≥ 1:

|Dγ
αQ(z)| − Λ|β| ≤ Λ|βαzn−1| − |Dγ

αP (z)|.

If we set |β| → 1, we get

|Dγ
αQ(z)|+ |Dγ

αP (z)| ≤ Λ{|αzn−1|+ 1}, for |z| ≥ 1.

The proof of (14) is thus complete and the proof of the inequality (15) follows in a
similar way. □

4. Proofs of the main results

Proof (of Theorem 2.1). By the hypothesis P (z) ̸= 0 in |z| < 1, and we have from
Theorem 1.2:

αD(α1,α2,...,αn)P (z) ̸= zD(α1,α2,...,αn)P (z)− cP (z) (19)

for |z| < 1 and for any α ∈ C with |α| < 1 and c ≥ 1. For any fixed z, we can choose
argα in (19) accordingly to get

|α| |D(α1,α2,...,αn)P (z)| ≠ |zD(α1,α2,...,αn)P (z)− cP (z)|.
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This results for |z| < 1 and |α| < 1:

|α| |D(α1,α2,...,αn)P (z)| < |zD(α1,α2,...,αn)P (z)− cP (z)| (20)

because otherwise the inequality (20) is violated, i.e. if (20) is not true, then there
exists z = z0 with |z0| < 1 such that

|α| |D(α1,α2,...,αn)P (z0)| ≥ |zD(α1,α2,...,αn)P (z0)− cP (z0)|,
but for small values of α would contradict our claim. Therefore (20) holds and making
|α| → 1 and |z| → 1 in (20), one has:

|D(α1,α2,...,αn)P (z)| ≤ |zD(α1,α2,...,αn)P (z)− cP (z)| (21)

for |z| = 1. On the other hand, let P (z) be a polynomial of degree n and M =
max|z|=1 |P (z)|, then |P (z)| ≤ M for |z| = 1. This gives for every λ with |λ| > 1,
|P (z)| < |λ|M for |z| = 1. Therefore, according to Rouche’s theorem, F (z) = P (z)−
λM has no zeros in |z| < 1. From (21), we get for |z| = 1

|D(α1,α2,...,αn)F (z)| ≤ |zD(α1,α2,...,αn)F (z)− cF (z)|,
or |D(α1,α2,...,αn)P (z)| ≤ |zD(α1,α2,...,αn)P (z)− c(P (z)− λM)|,
it implies for |z| = 1:

|D(α1,α2,...,αn)P (z)| ≤ |cP (z)− zD(α1,α2,...,αn)P (z)− cλM)|. (22)

An argument of λ is chosen such that

|cP (z)− zD(α1,α2,...,αn)P (z)− cλM)| = c|λ|M − |cP (z)− zD(α1,α2,...,αn)P (z)|.
For |z| = 1 and |λ| → 1, we thus get from (22)

|D(α1,α2,...,αn)P (z)|+ |cP (z)− zD(α1,α2,...,αn)P (z)| ≤ cmax
|z|=1

|P (z)|. (23)

From (21) and (23) we now obtain

2max
|z|=1

|D(α1,α2,...,αn)P (z)| ≤ cmax
|z|=1

|P (z)|,

which is (4), and this concludes the proof. □

Proof (of Theorem 2.4). Since M = max|z|=1 |P (z)|, we have for |z| = 1, |P (z)| ≤ M .
This gives for every complex number λ, with |λ| > 1 and |z| = 1, |P (z)| < |λ| |z|nM .
From Rouche’s theorem it follows that λMzn and P (z)−λMzn have the same number
of zeros within |z| = 1. Since all zeros of λMzn lie in |z| < 1, therefore it follows
that S(z) = P (z) − λMzn has all its zeros in |z| < 1 for all λ with |λ| > 1. Due to
Lemma 3.1, all zeros of

D(α1,α2,...,αn)S(z) = D(α1,α2,...,αn)P (z)− λM

n∑
k=1

αkz
n−1 (24)

are also in |z| < 1 for all λ with |λ| > 1. This results in

|D(α1,α2,...,αn)P (z)| ≤ M |z|n−1
n∑

k=1

αk, for |z| ≥ 1.
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If this is not true in general, then there exists z = z0 with |z0| ≥ 1 such that

|D(α1,α2,...,αn)P (z0)| > M |z0|n−1
n∑

k=1

αk.

Now we take λ =
D(α1,α2,...,αn)P (z0)

Mzn−1
0

∑n
k=1 αk

and we see that λ is a well-defined quantity with

|λ| > 1. From (24) and the chosen λ we get

D(α1,α2,...,αn)S(z0) = D(α1,α2,...,αn)P (z0)− λM

n∑
k=1

αkz
n−1
0

= D(α1,α2,...,αn)P (z0)−
D(α1,α2,...,αn)P (z0)

Mzn−1
0

∑n
k=1 αk

M

n∑
k=1

αkz
n−1
0 = 0,

which is a contradiction to the fact that all zeros of D(α1,α2,...,αn)S(z) lie in |z| < 1.
We must therefore have

|D(α1,α2,...,αn)P (z)| ≤ M |z|n−1
n∑

k=1

αk, for |z| ≥ 1.

Consequently,

max
|z|=1

|D(α1,α2,...,αn)P (z)| ≤
n∑

k=1

αk max
|z|=1

|P (z)|, for |z| = 1.

Proof (of Theorem 2.7). The proof is similar to the proof of Theorem 2.4 but instead
of using Lemma 3.1 we use Lemma 3.2. □

Proof (of Theorem 2.8). If P (z) is a polynomial of degree n and M = max|z|=1 |P (z)|,
then |P (z)| ≤ M for |z| = 1. According to Rouche’s theorem, the polynomial F (z) =
P (z)− λMzn vanishes in |z| < 1 if |λ| > 1. If we apply Lemma 3.5 for k = 1, we get

|Qγ(z)| ≤ |F γ(z)|, where Q(z) = zn P
(
1
z

)
. This gives |Qγ(z)| ≤ |P γ(z)−λMΛzn−1|.

From this we get for |z| = 1:

|P γ(z)|+ |Qγ(z)| ≤ ΛM. (25)

Now by (25)

|Dγ
αP (z)| = |ΛP (z) + (α− z)P γ(z)| = |ΛP (z)− zP γ(z) + αP γ(z)|

≤ |ΛP (z)− zP γ(z)|+ |α| |P γ(z)| = |Qγ(z)|+ |α| |P γ(z)|
≤ |α|(|Qγ(z)|+ |P γ(z)|) ≤ |α|ΛM.

Consequently, max
|z|=1

|Dγ
αP (z)| ≤ Λ|α|max

|z|=1
|P (z)|. □

Proof (of Theorem 2.10). Since P (z) vanishes in |z| ≥ 1 and thereforeQ(z) = zn P
(
1
z

)
vanishes in |z| ≤ 1. According to Rouche’s theorem, the polynomial P (z) − βQ(z)
for all β ∈ C with |β| > 1 has all its zeros in |z| ≤ 1. If s is any real number such
that s > 1, then we see that the polynomial P (sz) − βQ(sz) has all its zeros in
|z| ≤ 1/s < 1. Therefore, it follows from Lemma 3.3 with C = |z| < 1 that for every
complex number α with |α| ≥ 1 the polynomial Dγ

α[P (sz)− βQ(sz)] has all its zeros
in |z| < 1, that is, all zeros of Dγ

αP (sz)−βDγ
αQ(sz) lie in |z| < 1. This clearly implies
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that for |z| ≥ 1:

|Dγ
αP (sz)| ≤ |Dγ

αQ(sz)|. (26)

Letting s → 1 in (26) we obtain for |z| ≥ 1

|Dγ
αP (z)| ≤ |Dγ

αQ(z)|. (27)

If we now combine (27) with the inequality (14) of Lemma 3.6, we get (9). □

Proof (of Theorem 2.13). Since P (z) is a self-inverse polynomial, we have P (z) =
ζQ(z), where |ζ| = 1 and

Q(z) = zn P

(
1

z

)
.

Therefore, for every real or complex number α with |α| ≥ 1:

|Dγ
αP (z)| = |Dγ

αQ(z)|. (28)

With (28) in (14) of Lemma 3.6 we obtain 2|Dγ
αP (z)| ≤ Λ{|αzn−1| + 1}, and this

proves (10) for |z| ≥ 1 and |α| ≥ 1.
If we now use the equality (28) in (15) of Lemma 3.6, we obtain for every real or

complex number α with |α| ≤ 1 and |z| ≤ 1:

2|Dγ
αP (z)| ≤ Λ{|αzn−1|+ 1},

and this proves (10) for |z| ≤ 1 and |α| ≤ 1. □

Remark 4.1. On combining Lemma 3.5 for k = 1, Lemma 3.4 and inequality (25),

we have for |z| = 1 and Q(z) = zn P
(
1
z

)
:

|ΛQ(z)| = |ΛQ(z)− zQγ(z) + zQγ(z)| ≤ |ΛQ(z)− zQγ(z)|+ |zQγ(z)|
≤ |P γ(z)|+ |P γ(z)| = 2|P γ(z)|.

Therefore,

|P γ(z)| ≥ Λ

2
|P (z)|, (29)

Note that, inequality (29) holds for all polynomials vanishes in |z| ≤ 1.

Proof (of Theorem 2.14). The essence of the proof lies in the inequality (29) which is
being verified. Hence, we omit the details. □
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