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ON WARPED-TWISTED PRODUCT MANIFOLDS WITH
GRADIENT SOLITONS

Sibel Gerdan Aydın and Hakan Mete Taştan

Abstract. In this paper, we give new characterizations for warped-twisted product
manifolds. We study gradient Riemann, gradient Ricci, gradient Yamabe solitons and quasi-
Einstein case on warped-twisted product manifolds and we investigate the effect of a gradient
soliton and quasi-Einstein case on such manifolds to their factor manifolds. We also get some
results when the factor manifolds of the warped-twisted product manifolds are compact, the
twisting and the warping functions are harmonic.

1. Introduction

The notion of doubly twisted product [17] is a natural generalization of the notion
of doubly warped product [11], warped-twisted product [18], twisted product [12],
warped product [2] and direct product. The notion of warped product of pseudo-
Riemannian manifolds was defined by Bishop and O’Neill in [2] in order to construct
a large class of complete manifolds with negative curvature. Warped products are
intensively studied in mathematical physics as well as in differential geometry, in
particular in the theory of relativity. In fact, the standard spacetime models such as
Robertson-Walker, Schwarschild, static and Kruskal are warped products. Even the
simplest models of the neighborhoods of stars and black holes are warped products.

The theory of Ricci solitons is a rich area of research in differential geometry. Ricci
solitons are closely related to Einstein and quasi-Einstein manifolds [6], and they are
related to the warped product manifolds.

Recently, various geometric properties of Riemann [15], Ricci [14] and Yamabe soli-
tons [7] have been studied. Moreover, gradient solitons such as gradient Riemann, gra-
dient Ricci, gradient Yamabe were considered on twisted product and doubly warped
product manifolds [4,12]. In addition, De et al. [10] studied Ricci solitons on warped
product manifolds admitting either a conformal vector field or a concurrent vector
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field. Also Blaga [3] gave a way to construct a gradient η-Ricci soliton on a warped
product manifold when the base manifold is oriented, compact and of constant scalar
curvature.

In this paper, we review the basic background of warped-twisted product manifolds
and the definitions of gradient solitons in Section 2. In Section 3, we investigate the
effect of a gradient Riemann, gradient Ricci and gradient Yamabe soliton on a warped-
twisted product manifold on the factor manifolds and we also study quasi-Einstein
warped-twisted product manifolds. We establish a general inequality when the factor
manifolds of the warped-twisted product manifolds are compact, the twisting and the
warping functions are harmonic.

2. Preliminaries

2.1 Warped-twisted products

Let (M1, g1) and (M2, g2) be two Riemannian manifolds and let f2 : M2 → (0,∞)
and f1 : M1 ×M2 → (0,∞) be smooth functions. Then, the warped-twisted product
manifold f2M1×f1M2 [18] is the product manifoldM1×M2 equipped with the metric
tensor g defined by

g := (f2 ◦ π2)2π∗
1(g1) + f21π

∗
2(g2), (1)

where πi : M1 ×M2 → Mi is the canonical projection, for i = 1, 2. The function f2
is called a warping function and the function f1 is called a twisting function of the
warped-twisted product manifold.

Let f2M1 ×f1 M2 be a warped-twisted product manifold with the Levi−Civita
connection ∇, i.e., ∇ is calculated with respect to the metric g given in (1). Also
denote by ∇i the Levi−Civita connection of Mi, for i ∈ {1, 2}. By usual convenience,
we denote the set of lifts of vector fields onMi by L(Mi) and we use the same notation
for a vector field and for its lift. On the other hand, each πi is a positive homothety,
so it preserves the Levi−Civita connection. Thus, there is no confusion using the
same notation for a connection on Mi and for its pullback via πi. Then, the covariant
derivative formulas of the warped-twisted product manifold f2M1 ×f1 M2 with the
warping function f2 and twisting function f1 are given by

∇XY = ∇1
XY − g(X,Y )∇ ln(f2 ◦ π2), (2)

∇VX = ∇XV = V (ln(f2 ◦ π2))X +X(ln f1)V, (3)

∇UV = ∇2
UV + U(ln f1)V + V (ln f1)U − g(U, V )∇ ln f1. (4)

for any X,Y ∈ L(M1) and U, V ∈ L(M2).

Remark 2.1. From now on, we will put k = ln f1 (resp. l = ln f2) and use the same
symbol for the function k (resp. l) and its pullback k ◦ π1 (resp. l ◦ π2).

Now, let ψ be a smooth function on a warped-twisted product f2M1×f1M2. Then,
for any X ∈ L(M1) and U ∈ L(M2), by the definition of the Hessian tensor and by
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using (2) and (3), we have

hψ(X,U) = XU(ψ)−X(k)U(ψ)−X(ψ)U(l). (5)

Next, we define hψ1 (X,Y ):=XY (ψ)−(∇1
XY )(ψ), for allX,Y ∈ L(M1) and h

ψ
2 (U, V ):=

UV (ψ) − (∇2
UV )(ψ), for all U, V ∈ L(M2). By using (2) and (4), the Hessian tensor

hψ of ψ satisfies

hψ(X,Y ) = hψ1 (X,Y ) + g(X,Y )g(∇l,∇ψ) (6)

and hψ(U, V ) = hψ2 (U, V )− U(k)V (ψ)− V (k)U(ψ) + g(U, V )g(∇k,∇ψ). (7)

Since ∇l ∈ L(M2), from (6) and (7) we deduce that

hk(X,Y ) = hk1(X,Y ) + g(X,Y )g(∇l,∇k), (8)

hl(X,Y ) = g(X,Y )g(∇l,∇l), (9)

hk(U, V ) = hk2(U, V )− U(k)V (k)− V (k)U(k) + g(U, V )g(∇k,∇k), (10)

hl(U, V ) = hl2(U, V )− U(k)V (l)− V (k)U(l) + g(U, V )g(∇k,∇l). (11)

Let 1R and 2R be the lifts of the Riemann curvature tensors of (M1, g1) and
(M2, g2) respectively, and let R be the Riemann curvature tensor of the warped-
twisted product f2M1×f1M2. Then, by a direct computation and by using (2)–(4), we
have the following relations.

Lemma 2.2. Let X,Y, Z ∈ L(M1) and U, V,W ∈ L(M2). Then, we have

RXY Z =1RXY Z+H
l(Y )g(X,Z)−H l(X)g(Y, Z), (12)

RXY U = U(l)

{
Y (k)X−X(k)Y

}
, (13)

RUVX = X(k)

{
V (l)U−U(l)V

}
+UX(k)V−V X(k)U, (14)

RXUY =

{
hk1(X,Y )+X(k)Y (k)

}
U+Y (k)U(l)X+g(X,Y )

{
H l(U)+U(l)∇l

}
, (15)

RUXV =

{
hl2(U, V )+U(l)V (l)−U(l)V (k)−U(k)V (l)

}
X

+

{
V (l)X(k)−XV (k)

}
U+

{
X(k)∇k+Hk(X)

}
g(U, V ), (16)

RUVW =2RUVW−
{
hk2(V,W )−W (k)V (k)

}
U+

{
hk2(U,W )−W (k)U(k)

}
V

−
{
Hk(U)+U(k)∇k

}
g(V,W )+

{
Hk(V )+V (k)∇k

}
g(U,W ), (17)

where Hf is the Hessian tensor of a smooth function f on f2M1×f1M2, i.e., H
f (E) :=

∇E∇f , for any vector field E on f2M1×f1M2.

Let 1Ric and 2Ric be the lifts of the Ricci curvature tensors of (M1, g1) and (M2, g2)
respectively, and let Ric be the Ricci curvature tensor of the warped-twisted product

f2M1×f1M2. Then, by a direct computation and by using (12)–(17) and (9)–(10), we
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have the following relations.

Lemma 2.3. Let X,Y ∈ L(M1) and U, V ∈ L(M2). Then, we have

Ric(X,Y ) =1Ric(X,Y ) + hl(X,Y )−m2

{
hk1(X,Y ) +X(k)Y (k)

}
− g(X,Y )

{
∆l + g(∇l,∇l)

}
, (18)

Ric(X,U) = (1−m2)XU(k) + (m1 +m2 − 2)X(k)U(l), (19)

Ric(U, V ) =2Ric(U, V ) + hk(U, V ) + (1−m2)h
k
2(U, V ) +m2U(k)V (k)

− g(U, V )

{
∆k + g(∇k,∇k)

}
−m1

{
hl2(U, V ) + U(l)V (l)− U(l)V (k)− U(k)V (l)

}
, (20)

where ∆ is the Laplacian operator on f2M1×f1M2 and mi = dim(Mi), for i ∈ {1, 2}.

Remark 2.4. Let {e1, . . . , em1 , ω1, . . . , ωm2} be an orthonormal basis of the warped-
twisted product f2M1×f1M2, where {e1, . . . , em1

} are tangent toM1 and {ω1, . . . , ωm2
}

are tangent toM2. Then by (1), we see that {f2e1, . . . , f2em1
} is an orthonormal basis

of (M1, g1) and {f1ω1, . . . , f1ωm2
} is an orthonormal basis of (M2, g2).

Let 1τ and 2τ be the lifts of the scalar curvatures of (M1, g1) and (M2, g2) respec-
tively, and let τ be the scalar curvature of the warped-twisted product f2M1×f1M2.
Then, by Lemma 2.3 and Remark 2.4, we obtain

τ =
τ1

f22
+
τ2

f21
+∆̃1l+∆̃2k−

m2

f22
∆1k−

m1

f21
∆2l+

(1−m2)

f1
2 ∆2k−m2g(P1∇k, P1∇k)−m1∆l

−2m1g(∇l,∇l)−m2

{
∆k+g(∇k,∇k)

}
+m2g(P2∇k, P2∇k)+2m1g(P2∇k,∇l), (21)

where ∆i is the lift of the Laplacian operator on (Mi, gi),mi = dim(Mi), for i ∈ {1, 2}:

∆̃1(k) =

m1∑
i=1

hk(ei, ei), ∆̃2(k) =

m1+m2∑
i=m1+1

hk(ei, ei), ∆k = ∆̃1(k) + ∆̃2(k)

and ∇k = P1∇k + P2∇k, with Pi : L(M1 ×M2) → L(Mi).

2.2 Gradient Yamabe, gradient Ricci and gradient Riemann solitons

A semi-Riemannian manifold (Mm, g) is said to be a gradient Yamabe soliton [7] if
there exists a smooth function ψ on M and a real constant λ satisfying

hψ = (τ − λ)g, (22)

where τ is the scalar curvature of (M, g). More generally, if

hψ = γg (23)

holds for some smooth function γ, then the triple (M, g, ψ) is called conformal gradient
soliton.
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A semi-Riemannian manifold (Mm, g) is said to be a gradient Ricci soliton [14] if
there exists a smooth function ψ on M and a real constant λ satisfying

hψ +Ric = λg, (24)

where Ric is the Ricci curvature of (M, g).

A semi-Riemannian manifold (Mm, g) is said to be a gradient Riemann soliton [15]
if there exists a smooth function ψ on M and a real constant λ satisfying

hψ ∧ g +R = λG, (25)

where R is the Riemann curvature of (M, g), G = 1
2 (g ∧ g) and ∧ is the Kulkarni-

Nomizu product. Then, for any vector field X,Y, Z,W on M , equation (25) is explic-
itly expressed as

R(X,Y, Z,W ) + g(X,W )hψ(Y,Z) + g(Y,Z)hψ(X,W )− g(X,Z)hψ(Y,W )

− g(Y,W )hψ(X,Z) = λ
{
g(X,W )g(Y,Z)− g(X,Z)g(Y,W )

}
,

which by contraction over X and W , gives

hψ +
1

m− 2
Ric =

(m− 1)λ−∆ψ

m− 2
g, (26)

provided m ≥ 3. If m = 2, then Ric = (λ−∆ψ)g.

Generalizing the notions of Yamabe and Ricci soliton, we talk about η-Yamabe
and η-Ricci solitons.

A semi-Riemannian manifold (Mm, g) is said to be a gradient η-Yamabe soliton [5]
if there exist a smooth function ψ on M and two real constants λ and µ satisfying
hψ = (τ − λ)g + µη ⊗ η, where τ is the scalar curvature of (M, g) and η is a 1-form
on M .

A semi-Riemannian manifold (Mm, g) is said to be a gradient η-Ricci soliton [9]
if there exist a smooth function ψ on M and two real constants λ and µ satisfying
hψ +Ric = λg + µη ⊗ η, where Ric is the Ricci curvature of (M, g) and η is a 1-form
on M .

In all of the above cases, if λ > 0, λ < 0 or λ = 0, then the soliton is called a
shrinking, expanding or steady, respectively. If λ is allowed be a smooth function
on M , then (M, g, ψ) is called a gradient almost Yamabe, a gradient almost Ricci, a
gradient almost Riemann, a gradient almost η-Yamabe and a gradient almost η-Ricci
soliton, respectively.

Another generalization for the notion of Ricci soliton was introduced in [13].

A semi-Riemannian manifold (Mm, g) is said to be a gradient f -almost Ricci soli-
ton [13] if there exist smooth functions f , ψ and λ on M satisfying fhψ +Ric = λg.

We generalize this notion to gradient f -almost η-Ricci soliton as follows.

A semi-Riemannian manifold (Mm, g) is said to be a gradient f -almost η-Ricci
soliton if there exist smooth functions f , ψ, λ and µ on M satisfying fhψ + Ric =
λg + µη ⊗ η, where Ric is the Ricci curvature of (M, g) and η is a 1-form on M .

Finally, a Riemannian manifold (Mm, g), m ≥ 2, is said to be an Einstein mani-
fold [1] if its Ricci tensor Ric satisfies the condition Ric = τ

mg, where τ denotes the
scalar curvature of (M, g). A non-flat Riemannian manifold (M, g), m ≥ 2, is said to
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be a quasi-Einstein [6] if the condition

Ric = αg + βA⊗A (27)

is fulfilled on M , where α and β are scalar functions on M with β ̸= 0 and A is
non-zero 1-form such that g(X, ξ) = A(X), for every vector field X on M , ξ is a unit
vector field which is called the generator of the manifold M.

3. Main results

We first give some characterizations for warped-twisted product manifolds.
Let f2M1×f1M2 be a warped-twisted product manifold. Then, by using (8)–(11)

and Remark 2.4, we have

∆k =
1

f22
∆1k +

1

f21
∆2k +m1g(∇l,∇k) +m2f

2
2 g1(∇k,∇k)− 2g(P2∇k, P2∇k) (28)

and

∆l =
1

f21
∆2l +m1f

2
1 g2(∇l,∇l)− 2g(P2∇k,∇l) +m2g(∇k,∇l). (29)

Now, we suppose that the first factor manifold M1 is compact and the twisting func-
tion k is harmonic with respect to the Laplacian ∆. Then from (28) follows

∆1k = f22

{
− 1

f21
∆2k −m1g(∇l,∇k)−m2f

2
2 g1(∇k,∇k) + 2f22 g1(P2∇k,∇l)

}
.

If ∆1k has constant sign, for example, if ∆1k ≤ 0 on M1, then, by Hopf’s lemma, we
conclude that f1 is a constant function (say f1 = c1 = constant) on M1, since M1 is
compact. Hence, we can write g = f22 g1 ⊕ g̃2, where g̃2 = c21g2. Namely, f2M1×f1M2

can be expressed as a warped product f2M1×M2 with the warping function f2, where
the metric tensor of M2 is g̃2 given above. Therefore, we can state the following
theorem.

Theorem 3.1. Let f2M1×f1M2 be a warped-twisted product manifold with the first
factor manifold M1 compact. If the twisting function k is harmonic with respect to
the Laplacian ∆, then the manifold is a warped product of the form f2M1×M2 if and
only if

1

f21
∆2k +m1g(∇l,∇k) +m2f

2
2 g1(∇k,∇k) ≥ 2g(P2∇k, P2∇k). (30)

By using (29), we can prove the following result in a similar way.

Theorem 3.2. Let f2M1×f1M2 be a warped-twisted product manifold with the second
factor manifold M2 compact. If the warping function l is harmonic with respect to
the Laplacian ∆, then the manifold is a twisted product of the form M1×f1M2 if and
only if

m1f1
2g2(∇l,∇l) +m2g(∇k,∇l) ≥ 2g(P2∇k,∇l). (31)

From Theorem 3.1 and Theorem 3.2, we get the following result.
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Theorem 3.3. Let f2M1×f1M2 be a compact warped-twisted product manifold. If the
twisting function k and warping function l are harmonic with respect to the Laplacian
∆, then the manifold is a usual product of the form M1 × M2 if and only if (30)
and (31) hold.

Next, we characterize gradient Yamabe solitons on warped-twisted product.

Theorem 3.4. Let f2M1 ×f1 M2 be a warped-twisted product manifold. If it is a
gradient Yamabe soliton whose potential function ψ depends only on the points of M1,
then the manifold is a twisted product of the form M1×f1M2.

Proof. Under the given conditions in the hypothesis, for any X ∈ L(M1) and U ∈
L(M2), we have XU(ψ) −X(k)U(ψ) −X(ψ)U(l) = 0, from (5) and (22). We know
U(ψ) = 0, since ψ only depends on the points of M1, so, we obtain X(ψ)U(l) = 0.
Hence, we get U(l) = 0, for all U ∈ L(M2). Then, we find l = const, so f2 = c2
for some constant c2. Thus, we can write g = g̃1 ⊕ f21 g2, where g̃1 = c22g1, that is,

f2M1×f1M2 can be expressed as a twisted productM1×f1M2 with the twisting function
f1, where the metric tensor of M1 is g̃1 given above. □

Now, we shall investigate the geometry of the factor manifolds of a gradient Yam-
abe soliton with warped-twisted product structure.

Theorem 3.5. Let f2M1×f1 M2 be a warped-twisted product manifold. Then it is
a gradient Yamabe soliton with the potential function ψ if and only if the following
statements hold:
(a) (M1, g1, ψ1) is a gradient almost Yamabe soliton;

(b) hψ2

2 (U, V ) = (2τ − λ2)g2(U, V ) + dk(U)dψ(V ) + dk(V )dψ(U) for U, V ∈ L(M2);

(c) XU(ψ) = X(k)U(ψ) + X(ψ)U(l) for X ∈ L(M1) and U ∈ L(M2), where ψi =
ψ|Mi , for i ∈ {1, 2}.

Proof. From (22) we have hψ = (τ − λ)g. Hence, using (1), (6) and (21), we obtain

hψ1

1 = (1τ − λ1)g1 on M1, where

λ1 =− f22

{
2τ

f21
+ ∆̃1l + ∆̃2k −

m2

f22
∆1k −

m1

f21
∆2l +

(1−m2)

f21
∆2k

−m2g(P1∇k, P1∇k)−m1∆l − 2m1g(∇l,∇l)−m2{∆k + g(∇k,∇k)}

+m2g(P2∇k, P2∇k) + 2m1g(P2∇k,∇l) + λ+ g(∇l,∇ψ)
}
,

which means that (M1, g1, ψ1) is a gradient almost Yamabe soliton, as desired. On
the other hand, since hψ = (τ − λ)g, using (7), we find

hψ2

2 (U, V ) = (2τ − λ2)g2(U, V ) + U(k)V (ψ) + V (k)U(ψ)

on M2 for U, V ∈ L(M2), where

λ2 =− f21

{
1τ

f22
+ ∆̃1l + ∆̃2k −

m2

f22
∆1k −

m1

f21
∆2l +

(1−m2)

f21
∆2k

−m2g(P1∇k, P1∇k)−m1∆l − 2m1g(∇l,∇l)−m2{∆k + g(∇k,∇k)}
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+m2g(P2∇k, P2∇k) + 2m1g(P2∇k,∇l) + λ+ g(∇k,∇ψ)
}
.

So, we obtain the assertion (b). For X ∈ L(M1) and U ∈ L(M2), using (5) and (22),
we easily get the assertion (c). The converse is just a verification. □

Remark 3.6. The authors gave illustrative examples for gradient almost η-Yamabe
soliton and gradient η-Yamabe soliton when the potential vector field is a torse-
forming vector field of gradient type in [5, Example 3.16 and Example 3.15].

Theorem 3.7. A non-trivial warped-twisted product manifold f2M1×f1M2 does not
admit a conformal gradient soliton.

Proof. Let f2M1×f1M2 be a non-trivial warped-twisted product manifold. Assume
that (g, ψ) is a conformal gradient soliton on f2M1×f1M2. Then, for any vector fields
X̄, Ȳ on f2M1×f1M2, we have

hψ(X̄, Ȳ ) = γg(X̄, Ȳ ), (32)

from (23), where γ is a smooth function on M . By (32) and [8, Lemma 4.1], we
deduce that ∇ψ is a concircular vector field on (M, g), in which case, it follows that
the manifold is locally a warped product of the form I ×φ F from [8, Theorem 3.1],
where φ is a nowhere vanishing smooth function on an open interval I of the real line
and F is an (m−1)−dimensional Riemannian manifold, which is a contradiction. □

Theorem 3.8. Let f2M1×f1 M2 be a warped-twisted product manifold. Then it is
a gradient Ricci soliton with potential function ψ and constant λ if and only if the
following statements hold:
(a) (∇1φ1, λ1, µ1) defines a gradient almost η-Ricci soliton on (M1, g1), where φ1 =

ψ1 −m2k, λ1 = f22
{
λ+∆l− g(∇l,∇ψ)

}
, ψ1 = ψ|M1

, η = d̂k is the pullback of dk to
M1 and µ1 = m2;

(b) 2Ric(U, V )+hφ2

2 (U, V ) = λ2g2+(2−m2)d̃k(U)d̃k(V )+m1{dl(U)dl(V )−dl(U)d̃k(V )
−d̃k(U)dl(V )}+ d̃k(U)dψ(V )+ d̃k(V )dψ(U), where φ2 = ψ2−m1l− (m2−2)k , λ2 =
f21

{
λ+∆k − g(∇k,∇ψ

}
, ψ2 = ψ|M2

and d̃k is the pullback of dk to M2;

(c) XU(ψ)−X(ψ)U(l)−X(k)U(ψ) = −(1−m2)XU(k)− (m1 +m2 − 2)X(k)U(l),
for X ∈ L(M1) and U ∈ L(M2).

Proof. Let f2M1×f1M2 be a gradient Ricci soliton with the potential function ψ and
constant λ. Then, we have Ric+hψ = λg, from (24). Hence, using (6) and (18),

we obtain 1Ric+hψ1

1 = λ1g1 +m2h
k
1 +m2dk ⊗ dk on M1, where λ1 = f22

{
λ + ∆l −

g(∇l,∇ψ)
}
and ψ1 = ψ|M1

.
By direct computations, we get 1Ric+hφ1

1 = λ1g1 + m2dk ⊗ dk, where φ1 =
ψ1 −m2k. Thus, (∇1φ1, λ1, µ1) defines a gradient almost η-Ricci soliton on (M1, g1)

as desired, with η = d̂k which is the pullback of dk to M1. On the other hand,
using (7) and (20), we find
2Ric(U, V ) + hψ2

2 (U, V ) = λ2g2(U, V ) +m1h
l
2(U, V ) + (m2 − 2)hk2(U, V )

+ (2−m2)dk(U)dk(V ) +m1{dl(U)dl(V )− dl(U)dk(V )− dk(U)dl(V )}
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+ dk(U)dψ(V ) + dk(V )dψ(U)

onM2, where λ2 = f21
{
λ+∆k−g(∇k,∇ψ)

}
and ψ2 = ψ|M2 . By direct computations,

we get
2Ric(U, V ) + hφ2

2 (U, V ) = λ2g2 + (2−m2)dk(U)dk(V )

+m1{dl(U)dl(V )− dl(U)dk(V )− dk(U)dl(V )}+ dk(U)dψ(V ) + dk(V )dψ(U),

where φ2 = ψ2 −m1l − (m2 − 2)k. So, we obtain assertion (b).
Finally, for X ∈ L(M1) and U ∈ L(M2), we know that g(X,U) = 0. Thus, the

assertion (c) follows immediately from (5) and (19). The converse is trivial. □

Remark 3.9. The authors gave illustrative examples for gradient η-Ricci soliton,
gradient almost η-Ricci soliton in [5, Example 3.10 and Example 3.11]. Also Blaga
obtained that the generalized cylinderM×S3 has a gradient η-Ricci soliton structure
as a product manifold in [3, Example 4.9].

Theorem 3.10. Let f2M1×f1 M2 be a warped-twisted product manifold. If it is a
gradient Riemann soliton, then the following statements hold:
(a) (∇1φ1, λ1, µ1) defines a gradient almost η-Ricci soliton on (M1, g1), where φ1 =
(m − 2)ψ1 −m2k, λ1 = f22

{
(m − 1)λ + ∆l −∆ψ − (m − 2)g(∇l,∇ψ)

}
, ψ1 = ψ|M1

,

η = d̂k is the pullback of dk to M1 and µ1 = m2;

(b) 2Ric(U, V )+(m−2)hφ2

2 (U, V ) = λ2g2(U, V )+(2−m2)d̃k(U)d̃k(V )+m1{dl(U)dl(V )
−dl(U)d̃k(V ) − d̃k(U)dl(V )} + (m − 2){d̃k(U)dψ(V ) + d̃k(V )dψ(U)}, where φ2 =
(m− 2)ψ2 −m1l + (2−m2)k, λ2 = f21

{
(m− 1)λ+∆k −∆ψ − (m− 2)g(∇k,∇ψ)

}
,

ψ2 = ψ|M2
and d̃k is the pullback of dk to M2.

Proof. Let f2M1×f1M2 be a gradient Riemann soliton with the potential function ψ.
Then, we have Ric+(m − 2)hψ =

{
(m − 1)λ − ∆ψ

}
g, from (26). Hence, using (6)

and (18), we obtain 1Ric+(m − 2)hψ1

1 = λ1g1 + m2h
k
1 + m2dk ⊗ dk on M1, where

λ1 = f22
{
(m − 1)λ + ∆l − ∆ψ − (m − 2)g(∇l,∇ψ)

}
and ψ1 = ψ|M1 . By direct

computations, we get 1Ric+hφ1

1 = λ1g1 +m2dk ⊗ dk, where φ1 = (m− 2)ψ1 −m2k.
Thus, (∇1φ1, λ1, µ1) defines a gradient almost η-Ricci soliton on (M1, g1) as desired,
with η = dk. On the other hand, using (7) and (20), we find
2Ric(U, V ) + (m− 2)hψ2

2 (U, V ) = λ2g2(U, V )− (2−m2)h
k
2(U, V )

+m1h
l
2(U, V )(2−m2)dk(U)dk(V )

+m1{dl(U)dl(V )− dl(U)dk(V )− dk(U)dl(V )}(m− 2){dk(U)dψ(V ) + dk(V )dψ(U)}
on M2, where λ2 = f21

(
(m − 1)λ + ∆k −∆ψ − (m − 2)g(∇k,∇ψ)

)
and ψ2 = ψ|M2 .

After some computations, we get
2Ric(U, V ) + (m− 2)hφ2

2 (U, V ) = λ2g2(U, V ) + (2−m2)dk(U)dk(V )

+m1{dl(U)dl(V )− dl(U)dk(V )− dk(U)dl(V )}(m− 2){dk(U)dψ(V ) + dk(V )dψ(U)},
where φ2 = (m− 2)ψ2 −m1l + (2−m2)k. Thus, the assertion (b) holds. □

Theorem 3.11. Let f2M1×f1M2 be a warped-twisted product quasi-Einstein manifold
with associated scalar functions α0 and β0. Then
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(a) 1Ric(X,Y )−m2h
k
1(X,Y ) = λ1g1(X,Y )+β0Ã1(X)Ã1(Y )+m2d̂k(X)d̂k(Y ), where

λ1 = f22 (α0 +∆l), Ã1 = A|M1
, d̂k is the pullback of dk to M1;

(b) 2Ric(U, V ) + hφ2

2 (U, V ) = λ2g2(U, V ) + β0Ã2(U)Ã2(V ) + (2−m2)d̃k(U)d̃k(V ) +

m1

{
dl(U)dl(V ) − dl(U)d̃k(V ) − d̃k(U)dl(V )

}
, where φ2 = (2 −m2)k −m1l, λ2 =

f21 (α0 +∆k) and Ã2 = A|M2 , d̃k is the pullback of dk to M2.

Proof. For any X,Y ∈ L(M1), using (18), we have

α0g(X,Y ) + β0A(X)A(Y ) =1Ric(X,Y ) + hl(X,Y )−m2

{
hk1(X,Y ) +X(k)Y (k)

}
− g(X,Y )

{
∆l + g(∇l,∇l)

}
from (27). By using (9), we obtain

1Ric(X,Y )−m2h
k
1(X,Y ) = λ1g1(X,Y ) + β0Ã1(X)Ã1(Y ) +m2dk(X)dk(Y ),

where, λ1 = f22 (α0 +∆l). Thus, the assertion (a) holds. On the other hand, for any
U, V ∈ L(M2), using (20), we have

α0g(U, V ) + β0A(U)A(V ) = 2Ric(U, V ) + hk(U, V ) + (1−m2)h
k
2(U, V ) +m2U(k)V (k)

− g(U, V )

{
∆k + g(∇k,∇k)

}
−m1

{
hl2(U, V ) + U(l)V (l)− U(l)V (k)− U(k)V (l)

}
,

from (27). By using (10), we obtain
2Ric(U, V ) + (2−m2)h

k
2(U, V )−m1h

l
2(U, V ) = α0g(U, V ) + β0A(U)A(V )

+ (2−m2)U(k)V (k) + g(U, V )∆k +m1

{
U(l)V (l)− U(l)V (k)− U(k)V (l)

}
.

After some computations, we get
2Ric(U, V ) + hφ2

2 (U, V ) = λ2g2(U, V ) + β0Ã2(U)Ã2(V )

+ (2−m2)U(k)V (k) +m1

{
U(l)V (l)− U(l)V (k)− U(k)V (l)

}
,

where φ2 = (2−m2)k −m1l and λ2 = f21 (α0 +∆k). Thus, assertion (b) holds. □

Remark 3.12. The authors established the examples of warped product on mixed
generalized quasi-Einstein manifold in [16, Example 5.1 and Example 5.2].
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