
MATEMATIČKI VESNIK
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Abstract. In this paper, we investigate operators on Riesz algebras, which are continu-
ous with respect to multiplicative modifications of order convergence and relatively uniform
convergence. We also introduce and study mo-Lebesgue, mo-KB, and mo-Levi operators.

1. Introduction

It is known that the order, the relatively uniform, unbounded order, and various order
convergences in Riesz algebras are generally not topological in general (cf. [6, Theorem
2.2]). As far as we know, there is no sufficiently comprehensive study of operator
theory on Riesz algebras. The aim of this paper is to present and study operators
on Riesz algebras that are continuous, e.g. with respect to mo- or mr-convergences.
Throughout the paper we assume that all vector spaces are real and all operators are
linear. In the following, the letters X and Y stand for Riesz spaces and the letters E
and F for Riesz algebras.

A net (xα)α∈A in a Riesz space X is order convergent (or short o-convergent) to
x ∈ X if there exists a net (yβ)β∈B that satisfies yβ ↓ 0, and for any β ∈ B there

exists αβ ∈ A such that |xα − x| ≤ yβ for all α ≥ αβ . In this case, we write xα
o−→x.

A net (xα)α∈A in X relatively uniform converges to x ∈ X (xα
r−→x for short) if there

exists u ∈ X+, such that for any n ∈ N, there exists αn such that |xα − x| ≤ 1
nu for

all α ≥ αn. An operator T between Riesz spaces is called:
− order-bounded, if T transforms order-bounded sets into order-bounded sets;

− regular, if T = T1 − T2 with T1, T2 ≥ 0;

− order continuous, if Txα
o−→Tx whenever xα

o−→x;
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− relatively uniform continuous, if Txα
r−→Tx whenever xα

r−→x.
It is known that order-continuous and relatively order-continuous operators are order
bounded. The collection Lr(X,Y ) of all regular operators between the Riesz spaces
X and Y is a subspace of the vector space Lb(X,Y ) of all bounded operators from
X to Y . Let Y be Dedekind-complete, then let Lr(X,Y ) be a Dedekind-complete
Riesz space (cf. [2, Theorem 1.67]), which contains the collection Ln(X,Y ) of all order
continuous operators from X to Y as a band (cf. [2, Theorem 1.73]). We write Lr(X)
for Lr(X,X); Ln(X) for Ln(X,X); etc.

Recall that a Riesz space E Riesz algebra if E is an associative algebra whose
positive cone E+ is closed under the algebra multiplication, i.e. x·y ∈ E+ if x, y ∈ E+.
A Riesz algebra E is called (cf. [3, 5, 7, 9]):
− left (right) d-algebra if u · (x∧y) = (u ·x)∧ (u ·y) (resp., (x∧y) ·u = (x ·u)∧ (y ·u))
for all x, y ∈ E and u ∈ E+;

− d-algebra if E is both left and right d-algebra;

− left (right) f -algebra if x ∧ y = 0 implies(u · x) ∧ y = 0 (resp., (x · u) ∧ y = 0) for
all u ∈ E+;

− f -algebra, if E is both left and right f -algebra;

− semiprime if the only nilpotent element in E is 0;

− unital if E has a positive multiplicative unit.
Every Riesz space E becomes a commutative f -algebra with respect to the trivial
algebraic multiplication x ∗ y = 0 for all x, y ∈ E, and (E, ∗) is neither unital nor
semiprime unless dim(E) = 0.

Example 1.1 ( [5, Example 5]). In the Riesz space R
D of all R-valued functions

on a set D, any f -algebra multiplication ∗ is uniquely determined by the function
ζ(d) := [I{d} ∗ I{d}](d), where IA ∈ R

D is the characteristic function of A ⊆ D.
Moreover, (RD, ∗) is unital iff it is semiprime iff ζ is a weak order unit in R

D.

Let c be a linear convergence on a Riesz algebra E (see e.g. [5, Definition 1.6]).

Definition 1.2 ([5, Definition 5.3]). The algebra multiplication in E is called left

c-continuous (right c-continuous) if xα
c−→x implies y ·xα

c−→ y ·x (resp., xα · y c−→x · y)
for every y ∈ E. The algebra multiplication is called c-continuous if it is both left
and right c-continuous.

Definition 1.3. Let X and Y be Riesz spaces equipped with linear convergences c1
and c2 respectively. An operator T : X → Y is called c1c2-continuous, whenever
xα

c1−→x in X implies Txα
c2−→Tx in Y . In the case when c1 = c2, we say that T is

c1-continuous. The collection of all c1c2-continuous operators from X to Y is denoted
by Lc1c2(X,Y ), and if c1 = c2, we denote Lc1c2(X,Y ) by Lc1(X,Y ), and Lc1(X,X)
by Lc1(X).

A net xα in a Riesz algebra E is said to be left (right) multiplicative c-convergent

to x if u · |xα − x| c−→ (resp. |xα − x| · u c−→ 0) for all u ∈ E+; briefly xα
mlc−−→x (resp.
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xα
mrc−−→x). If xα

mlc−−→x and xα
mrc−−→x simultaneously, we write xα

mc−−→x (cf. [5, Def-
inition 5.4]). It is worth to notice that many multiplicative c-convergences could be
defined by specifying the collections of admissible factors, e.g. the right multiplicative
c-convergence of a net xα in E to x ∈ E w.r. to A ⊆ E:

xα
mrc(A)−−−−→x whenever |xα − x| · u c−→ 0 (∀u ∈ A).

We postpone the study of such specified convergences to further papers.

Remark 1.4. Clearly, mlc ≡ mrc in commutative algebras. Moreover, mlc-convergence
turns to mrc-convergence and vice versus, if we replace the algebra multiplication “ · ”
in E by “ ·̂ ” such that x ·̂ y := y · x.

For Riesz spaces and Riesz algebras we refer to [2, 3, 5, 9]. The structure of this
paper is as follows. In Section 2 we investigate mo-, rmo-, and omo-continuous oper-
ators. Section 3 is dedicated to mo-Lebesgue, mo-KB, and mo-Levi operators as well
as the dominance problem for such operators.

2. Basic properties of mo-continuous operators

In this section we investigate basic properties of mo-, omo- and rmo-continuous oper-
ators in Riesz algebras.

Let X be a Dedekind complete Riesz space. The space Lr(X) is a unital Dedekind
complete Riesz algebra under the composition operation, and the space Ln(X) is a
Riesz subalgebra of Lr(X). It is well known that the algebra multiplication in Lr(X)
is right o-continuous, while in Ln(X) o- continuous (see e.g. [3, Theorem 1.56]). The
following result extends this fact to mo-convergence.

Theorem 2.1. Let X be a Dedekind complete Riesz space. Then the algebra multi-
plication is:
(i) right mro-continuous in E = Lr(X);

(ii) left and right mo-continuous in F = Ln(X).

Proof. (i) Let Tα
mro−−→T in E and R ∈ E, Then, for every S ∈ E+,

|Tα ◦R− T ◦R| ◦ S ≤ |Tα − T | ◦ |R| ◦ S = |Tα − T | ◦ (|R| ◦ S) o−→ 0. (1)

By (1), |Tα ◦R− T ◦R| ◦ S o−→ 0 for every S ∈ E+ and hence Tα ◦R mro−−→T ◦R. Since
R ∈ E is arbitrary, the algebra multiplication in E is right mro-continuous.

(ii) Let Tα
mo−−→T in F and R ∈ F . Since S ◦ |Tα − T | o−→ 0 for each S ∈ F+, it

follows from

S ◦ |Tα ◦R− T ◦R| ≤ S ◦ |Tα − T | ◦ |R| = (S ◦ |Tα − T |) ◦ |R| (∀S ∈ F+)

that S ◦ |Tα ◦ R − T ◦ R| o−→ 0, because the multiplication in E is right o-continuous

by [3, Theorem 1.56]. Since S ∈ F is arbitrary, we conclude that Tα ◦ R
mlo−−→T ◦ R

and hence the multiplication in F is right mlo-continuous. It follows from (i) that
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Tα ◦R mro−−→T ◦R, and hence Tα ◦R mo−−→T ◦R. Since R ∈ F is arbitrary, the algebra
multiplication in F is right mo-continuous.

We skip similar elementary arguments which shows that the algebra multiplication
in F is also left mo-continuous. □

The following example shows that, in general, the algebra multiplication is not
left mro-continuous in Lr(X).

Example 2.2. Take a free ultrafilter U on N. Recall that any bounded real sequence
xk converges along U to some xU = limU xk ∈ R in the sense that {k ∈ N : |xk−xU | ≤
ε} ∈ U for every ε > 0. Define operators L, Tn ∈ Lr(ℓ

∞) by Lx := xU ·1N and Tnx :=

xU ·1{k∈N:k≥n}. It is easy to see that Tn ↓ 0 and hence Tn
mro−−→ 0 in Lr(ℓ

∞). However,
L◦Tn(x) = L(xU ·1{k∈N:k≥n}) = xU ·1N implies that L◦Tn◦I = L◦Tn ≡ L ̸= 0. Thus
the sequence L ◦Tn does not mro-converge to 0, and hence the algebra multiplication
in the Riesz algebra Lr(ℓ

∞) is neither left o-, nor left mro-continuous.

The following observation is straightforward.

Observation 2.3. Let E and F be Riesz algebras.
a) The collections Lmro

(E,F ), Lomro
(E,F ), and Lrmro

(E,F ) of all mro-, omro-, and
rmro-continuous operators from E to F are vector spaces.

b) If E is unital, then Lomro
(E,F ) ⊆ Lmro

(E,F ).

c) If F is unital, then Lomro(E,F ) ⊆ Ln(E,F ).

d) If E has right o-continuous algebra multiplication then Lmro
(E,F ) ⊆ Lomro

(E,F )
(cf. [5, Lemma 5.5]).

e) If E is Archimedean then Lomro(E,F ) ⊆ Lrmro(E,F ).

f) If E is Archimedean and has right o-continuous algebra multiplication then by d)
and e): Lmro

(E,F ) ⊆ Lrmro
(E,F ).

g) If F is an Archimedean f -algebra then the algebra multiplication in F is commuta-
tive and o-continuous (cf. [7, 9]). Hence Ln(E,F ) ⊆ Lomo(E,F ) (cf. [5, Lemma 5.1]).

The next result generalizes [5, Proposition 5.1] with essentially the same proof.

Proposition 2.4. The algebra multiplication in any Riesz algebra F is both left and
right r-continuous.

Proof. Let xα
r−→x in F and y ∈ F . Then there exists v ∈ F+ such that, for any

k ∈ N, there is αk with |xα − x| ≤ 1
kv for all α ≥ αk. Since, for all α ≥ αk we have

|y · xα − y · x| ≤ |y| · |xα − x| ≤ 1

k
|y| · v & |xα · y − x · y| ≤ |xα − x| · |y| ≤ 1

k
v · |y|

for all α ≥ αk, it follows y · xα
r−→ y · x and xα · y r−→x · y. The result follows from the

fact that y ∈ F was taken arbitrarily. □

Proposition 2.5. Let X be a Riesz space and F an Archimedean Riesz algebra. Then
Lrr(X,F ) ⊆ Lrmo(X,F ).
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Proof. Let T ∈ Lrr(X,F ). Suppose xα
r−→x in X. Then Txα

r−→Tx in F . Take
u ∈ F+, such that, for any n ∈ N, there exists αn with |Txα − Tx| ≤ 1

nu for all
α ≥ αn. Take any w ∈ F+. Then |Txα − Tx| · w ≤ 1

nu · w for all α ≥ αn. Since

F is Archimedean, then 1
nu · w ↓ 0 and hence |Txα − Tx| · w o−→ 0. Since w ∈ F+ is

arbitrary, Txα
mro−−→Tx. Since the proof of Txα

mlo−−→Tx is analogous, we obtain the
desired result. □

Theorem 2.6. Let X be a Riesz space and let F be an Archimedean Riesz algebra,
then Lr(X,F ) ⊆ Lrr(X,F ) ⊆ Lrmlr

(X,F ) ∩ Lrmrr(X,F ) ⊆ Lrmo(X,F ).

Proof. Despite the first incision is well known, we include its proof for the convenience.
Let T ∈ Lr(X,F ) and xα

r−→x in X. Take T1, T2 ≥ 0 with T = T1 − T2 and u ∈ X+,
so that, for each n ∈ N, there exists αn such that |xα − x| ≤ 1

nu for all α ≥ αn. Then

|Txα − Tx| = |(T1 − T2)xα − (T1 − T2)x| = |T1(xα − x)− T2(xα − x)|

≤ |T1(xα − x)|+ |T2(xα − x)| ≤ T1|xα − x|+ T2|xα − x| ≤ 1

n
(T1u+ T2u),

and thus Txα
r−→Tx in E. Hence Lr(X,F ) ⊆ Lrr(X,F ).

In the rest of the proof, it suffices to restrict ourselves to the “right” case only. Let
T ∈ Lrr(X,F ) and xα

r−→x in X. It follows from Txα
r−→Tx that there exist w ∈ F+

and a sequence of indexes αn satisfying |Txα − Tx| ≤ 1
nw for all α ≥ αn. Then, for

every f ∈ F+,

|Txα − Tx| · f ≤ 1

n
w · f (∀α ≥ αn). (2)

By (2), Txα
mrr−−→Tx and hence Lrr(X,F ) ⊆ Lrmrr

(X,F ).
The inclusions Lrmlr

(X,F ) ⊆ Lrmlo
(X,F ) and Lrmrr(X,F ) ⊆ Lrmro(X,F ) hold

true because the r-convergence implies o-convergence in any Archimedean Riesz space,
so in F . □

Example 2.7. The set Orth(X) of all orthomorphisms on an Archimedean Riesz
space X is an Archimedean commutative unital algebra with o-continuous algebra
multiplication [9, Theorem 8.6]. Since mo-convergence coincides with o-convergence
in Orth(X), any operator from Orth(X) to an arbitrary Riesz algebra is mo-continuous
iff it is omo-continuous.

Example 2.8 ( [5, Example 6]). Let U be a free ultrafilter on N. We define an
operation ∗ in ℓ∞ by x ∗ y := limU (xn · yn) · 1N. It is easy to see that (ℓ∞, ∗) is a
commutative d-algebra. The identity operator I on (ℓ∞, ∗) is order bounded but it

is neither omlo- nor omro-continuous. Indeed, fn := 1{k∈N:k≥n}
o−→ 0 in ℓ∞, yet the

sequence 1 ∗ I(fn) = I(fn) ∗1 = fn ∗1 ≡ 1 o-converges to 1 ̸= 0 = 1 ∗ I(0) = I(0) ∗1.

We continue with the following extension of [5, Theorem 12].

Proposition 2.9. Let E be a Riesz algebra. The following conditions are equivalent:
(i) E is a left (right) d-algebra with left (right) o-continuous multiplication;
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(ii) infE(u · A) = u · infE A (resp., infE(A · u) = (infE A) · u) for every u ∈ E+ and
A ⊆ E such that infE A exists;

(iii) supE(u · A) = u · supE A (resp., supE(A · u) = (supE A) · u) for every u ∈ E+

and A ⊆ E such that supE A exists.

The proof of Proposition 2.9 for the “right” case coincides with the proof of [5,
Theorem 12], and the proof for the “left” case is similar.

Theorem 2.10. Each mro-continuous operator from a Riesz algebra E satisfying
infE(A · u) = (infE A) · u for every u ∈ E+ and A ⊆ E, whenever infE A exists, to
a Riesz algebra F is omro-continuous. The same result is true with replacing ”right”
by ”left”.

Proof. We restrict ourselves to the “right” case only. It is enough to show that o-
convergence implies mro-convergence in E. Let xα

o−→x in E. Then there exists a net
yβ satisfying yβ ↓ 0, and for any β, there is αβ such that |xα−x| ≤ yβ for all α ≥ αβ .
Take u ∈ E+. Then |xα−x| ·u ≤ yβ ·u for all α ≥ αβ . It follows from Proposition 2.9

inf
β∈B

(yβ · u) = ( inf
β∈B

yβ) · u = 0. Thus yβ · u ↓ 0, and hence |xα − x| · u o−→ 0. Since

u ∈ E+ is arbitrary, xα
mro−−→x. □

Each Archimedean f -algebra E is a commutative d-algebra (cf. [7]), and hence
satisfies the conditions of the above theorem due to Proposition 2.9. The following
example shows that o-continuity of the algebra multiplication in E is essential in
Theorem 2.10.

Example 2.11. Consider the following d-algebra multiplication in the Riesz space c
of convergent real sequences:

x ∗ y := ( lim
n→∞

xn · yn) · 1N. (3)

The algebra multiplication ∗ is not o-continuous since 1{k≥n} ↓ 0 but 1N ∗ 1{k≥n} ≡
1N ̸= 0. The identity operator I on (c, ∗) is trivially mo-continuous. However, it is

not omo-continuous: 1{k≥n}
o−→ 0 yet I(1{k≥n}) ∗ 1N ≡ 1N, and hence I(1{k≥n}) does

not mo-converge to I(0) = 0.

Furthermore, I is momr-continuous on (c, ∗). Indeed, gα
mo−−→ 0 in (c, ∗) implies

|gα|∗1N
o−→ 0, and since by (3), the sequence |gα|∗1N lies in one dimensional sublattice

of c, then |gα|∗1N
r−→ 0, which implies that |gα|∗u

r−→ 0 for all u ∈ c+, and hence gα
mr−−→ 0

in (c, ∗).

Definition 2.12. A subset A of a Riesz algebra E is called:
− mlo-bounded if the set u ·A is order bounded for each u ∈ E+;

− mro-bounded if A · u is order bounded for each u ∈ E+;

− mo-bounded if A is both mlo- and mro-bounded.

Every o-bounded subset of E is mo-bounded; and if the algebra multiplication in
E is trivial then every subset of E is mo-bounded.
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Definition 2.13. An operator T from a Riesz space X to a Riesz algebra F is called
mlo-, mro-, or else mo-bounded if T maps order bounded subsets of X into mlo-, mro-,
or mo-bounded subsets of F respectively.

If the algebra multiplication in E is trivial, then every operator on E is mo-
bounded.

Remark 2.14. Let X be a Riesz space, and let F be a Riesz algebra. Then:
− every order bounded (and hence every positive) operator from X to F is mo-
bounded;

− if F is unital, then every (mlo-) mro-bounded operator from X to F is order
bounded.

The next result is a version of [1, Theorem 2.1] for mo-continuous operators.

Theorem 2.15. Let T : E → F be an operator between two Archimedean Riesz
algebras.
(i) If T is mo-, omo-, or rmo-continuous then T is mo-bounded.

(ii) If T is mlo-, omlo-, or rmlo-continuous (resp., mro-, omro-, or rmro–continuous)
then T is mlo-bounded (resp., mro-bounded).

Proof. (i) Let T : E → F be an mo-continuous (resp., omo-continuous, rmo-continuous)
operator between two Riesz algebras. Take an arbitrary order interval [0, b] ⊆ E and
consider the directed set I = N × [0, b] with the lexicographical order [1, Theo-
rem 2.1]. Take a net x(n,y) :=

1
ny indexed by I. It follows from 0 ≤ x(n,y) ≤ 1

nb ↓ 0

that x(n,y)
r−→ 0. Then x(n,y)

o−→ 0, x(n,y)
mr−−→ 0, and x(n,y)

mo−−→ 0. If T is mo-continuous

(resp., omo-, and rmo-continuous) then Tx(n,y)
mo−−→ 0. Hence

|w · T (x(n,y))| ∨ |T (x(n,y)) · w|
o−→ 0 (∀w ∈ F+).

Take any w ∈ F+. Then there exists a net zβ ↓ 0 in F such that for every β there exists
(nβ , yβ) ∈ I satisfying |w · T (x(n,y))| ∨ |T (x(n,y)) · w| ≤ zβ for all (m, y) ≥ (nβ , yβ).
Take any zβ . Then, in particular, for all u ∈ [0, b],

1

nβ + 1
(|w · Tu| ∨ |(Tu) · w|) = |w · T (x(nβ+1,u))| ∨ |T (x(nβ+1,u)) · w| ≤ zβ . (4)

By (4), w · T [0, b] ∪ (T [0, b]) · w ⊆ [−(nβ + 1)zβ , (nβ + 1)zβ ] and since w ∈ F+ is
arbitrary, we conclude that T is mo-bounded.

(ii) The modification of the proof in (i) for the “mlo-” and “mro-bounded case” is
trivial. □

3. mo-Lebesgue, mo-KB, and mo-Levi operators

In this section, we undertake an attempt to adopt some of results of the recent paper
[4] to mo-convergence in Riesz algebras. Especially, we investigate the domination
problem for related operators.
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Definition 3.1. We say that an operator T

a) from a Riesz space X to a Riesz algebra F is mo-Lebesgue if Txα
mo−−→ 0 for every

net xα in X such that xα ↓ 0. In particular, every omo-continuous operator is mo-
Lebesgue;

b) from a locally solid Riesz space X = (X, τ) to a Riesz algebra F is an mo-KB-
operator if, for every τ -bounded increasing net xα in X+, there exists x ∈ X such

that Txα
mo−−→Tx;

c) from a locally solid Riesz space X = (X, τ) to a Riesz algebra F is a quasi mo-
KB-operator if, for every τ -bounded increasing net xα in X+, Txα is an mo-Cauchy
net;

d) from a Riesz algebra E to a Riesz algebra F is an mo-Levi operator if, for every

mo-bounded increasing net xα in E+, there exists x ∈ E such that Txα
mo−−→Tx;

e) from a Riesz algebra E to a Riesz algebra F is a quasi mo-Levi operator if, for
every mo-bounded increasing net xα in E+, the net Txα is mo-Cauchy in F .

The mlo- mro-Lebesgue operators, the mlo- and mro-KB-operators, the quasi mlo-
KB- and quasi mro-KB-operators, the mlo- and mro-Levi operators, the quasi mlo-
Levi and quasi mro-Levi operators are defined analogously.

Although it seems that the sequential versions of Definition 3.1 and the adopted
for r-convergence modifications of this definition are also interesting, we do not study
them in the present paper.

Example 3.2 ([4, Example 3.1]). Let E be the f -algebra of all bounded real functions
on [0, 1] which differ from a constant on at most countable subset of [0, 1] equipped
with the poinwise algebraic multiplication. Let T : E → E be an operator that assigns
to each f ∈ E the constant function Tf on [0, 1] such that the set {t ∈ [0, 1] : f(t) ̸=
(Tf)(t)} is at most countable. Then T is a rank one operator which is continuous in
the sup-norm on E. Consider the following net in E indexed by finite subsets of [0, 1]:

fα(t) =

{
1 if t ̸∈ α

0 if t ∈ α

Then fα ↓ 0 in E and so fα
mo−−→ 0. However, Tfα ≡ 1[0,1] for all α, and hence

Tfα
mo−−→ 1[0,1] ̸= 0. Therefore T is neither omo- nor mo-Lebesgue.

It is well known that each order bounded disjointness preserving operator T be-
tween Riesz spaces X and Y has modulus |T |, and |T ||x| = |T |x|| = |Tx| for all x ∈ X;
and there exist Riesz homomorphisms R1, R2 : X → Y such that T = R1 −R2.

The next theorem is motivated by [4, Theorem 2.5] and has the similar proof.

Theorem 3.3. Let T be an order bounded disjointness preserving mo-KB-operator
from a locally solid Riesz space (X, τ) to a Riesz algebra F . If |S| ≤ |T | then S is an
mo-KB-operator. The similar result holds true for mlo-KB and mro-KB operators.
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Proof. We restrict ourselves to the case of mo-KB-operators. Take a τ -bounded
increasing net xα in X+. Then T (xα−x)

mo−−→ 0 for some x ∈ X. So, for every u ∈ F+,

u · |T (xα − x)| o−→ 0 and |T (xα − x)| · u o−→ 0, and hence

u · |S(xα − x)| ≤ u · |S||xα − x| ≤ u · |T ||xα − x| = u · |Txα − Tx| o−→ 0;

|S(xα − x)| · u ≤ |S||xα − x| · u ≤ |T ||xα − x| · u = |Txα − Tx| · u o−→ 0.

Thus (u · |Sxα − Sx|)∨ (|Sxα − Sx| · u) o−→ 0 for every u ∈ F+. Therefore Sxα
mo−−→Sx,

and hence S is an mo-KB-operator. □

Since, for a Riesz homomorphism T , 0 ≤ S ≤ T implies that S is also a Riesz
homomorphism, the next result follows from Theorem 3.3.

Corollary 3.4. Let T be an mo-KB Riesz homomorphism from a locally solid Riesz
space to a Riesz algebra. Then every operator S satisfying 0 ≤ S ≤ T is also an
mo-KB Riesz homomorphism. The similar result is true for mlo-KB and mro-KB
Riesz homomorphisms.

The following two results are motivated by [4, Theorem 2.6, Theorem 2.7].

Theorem 3.5. Let T be a positive quasi mo-KB operator from a locally solid Riesz
space (X, τ) to a Riesz algebra F . Then every operator S satisfying 0 ≤ S ≤ T is also
a quasi mo-KB operator. The similar result holds true for quasi mlo-KB and quasi
mro-KB operators.

Proof. Take an increasing τ -bounded net xα in X+ and let 0 ≤ S ≤ T . Then
Txα ↑, and since T is quasi mo-KB, the net Txα is mo-Cauchy. Pick a u ∈ F+.
Then there exists a net zβ ↓ in F such that, for each β, there exists αβ such that
u · |Txα1

− Txα2
| ≤ zβ for all α1, α2 ≥ αβ . Choosing α1, α2 ≥ αβ for a fixed αβ we

have

u · |Sxα1
− Sxα2

| ≤ u · |S(xα1
− xαβ

)| ≤ u · |T (xα1
− xαβ

)| ≤ zβ . (5)

By (5), u · |Sxα1
− Sxα2

| ≤ zβ for all α1, α2 ≥ αβ . Thus the net Sxα is mlo-Cauchy.
Hence, the operator S is quasi mlo-KB. Similar argument shows that S is quasi
mro-KB. Therefore, S is a quasi mo-KB-operator. □

Theorem 3.6. Let T be a positive quasi mlo-Levi operator from a Riesz algebra E to
a Riesz algebra F . Then each operator S : E → F satisfying 0 ≤ S ≤ T is also quasi
mlo-Levi. The similar result holds true for quasi mro-Levi and mo-Levi operators.

Proof. Let xα be an mlo-bounded increasing net in E+. Then the net Txα is mlo-
Cauchy in F . Pick some u ∈ F+. There exists a net zβ ↓ 0 in F such that, for each β,
there exists αβ such that u · |Txα1

−Txα2
| ≤ zβ for all α1, α2 ≥ αβ . Pick α1, α2 ≥ αβ

for a fixed αβ . Then

u · |Sxα1
− Sxα2

| ≤ u · |S(xα1
− xαβ

)| ≤ u · |T (xα1
− xαβ

)| ≤ zβ . (6)

By (6), u · |Sxα1
− Sxα2

| ≤ zβ for all α1, α2 ≥ αβ . Since u ∈ F+ is arbitrary, the net
Sxα is mlo-Cauchy. Hence, S is quasi mlo-Levi. Analogously, if T is quasi mro-Levi
or mo-Levi then S has the same property. □
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We conclude the paper with a brief discussion of the extensions of operators in-
troduced in Definition 3.1 to the second-order duals. In what follows, we assume that
the first-order dual of any Riesz space under consideration separates its points. Recall
that under these conditions, any Riesz space X is embedded in its second-order dual

X ′′ via the mapping x
i→ x′′, where x′′(z) = z(x) for all z ∈ X ′. If (E, ·) is a Riesz

algebra, then E′′ is again a Riesz algebra with respect to Arens multiplication [8]. In
all cases of an operator T considered in Definition 3.1, i.e. T : X → F and T : E → F ,
the second dual T ′′ acts between spaces of the same type. Therefore, it is natural
to ask whether or not, for an mo-Lebesgue, mo-KB-, and mo-Levi operator T , the
operator T ′′ is mo-Lebesgue, mo-KB-, and mo-Levi respectively. The authors are not
aware of any examples for T , for which the answer to the above question is negative.
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