MATEMATIČKI VESNIK MATEMATИЧКИ BECHИК Corrected proof Available online 10.09.2024

research paper оригинални научни рад DOI: 10.57016/MV-90Pjfk2Q

A NOTE ON PO-EQUIVALENT TOPOLOGIES

Dimitrije Andrijević

Abstract. Two topologies on a set X are called PO-equivalent if their families of preopen sets concide. Let $P(\mathcal{T})$ stand for the class of all topologies on X which are PO-equivalent to \mathcal{T} and denote by \mathcal{T}_M the topology on X having for a base $\mathcal{T}_\alpha \cup \{\{x\} \mid \{x\} \text{ is closed-and$ $open in <math>\mathcal{T}_\gamma\}$. It was proved in [Andrijević, M. Ganster, On PO-equivalent topologies, Suppl. Rend. Circ. Mat. Palermo, **24** (1990), 251–256] that the class $P(\mathcal{T})$ does not have the largest member in general. Precisely, if $P(\mathcal{T})$ has the largest member, say \mathcal{U} , then $\mathcal{U} = \mathcal{T}_M$. On the other hand, it was shown that \mathcal{T}_M does not necessarily belong to $P(\mathcal{T})$. In this paper we are going to show that the topology \mathcal{T}_M is actually the least upper bound of the class $P(\mathcal{T})$.

1. Introduction

Let A be a subset of a topological space (X, \mathcal{T}) . We denote the closure and the interior of A in (X, \mathcal{T}) by clA and intA respectively. The class of closed sets (resp. closed-and-open sets) in (X, \mathcal{T}) is denoted by $C(\mathcal{T})$ (resp. $CO(\mathcal{T})$). The class of nowhere dense sets in (X, \mathcal{T}) is denoted by $N(\mathcal{T})$.

DEFINITION 1.1. A subset A of a space X is called: (i) an α -set if $A \subset int(cl(intA))$ ([6]), (ii) semi-open if $A \subset cl(intA)$ ([4]),

(iii) preopen if $A \subset int(clA)$ ([5]).

We denote the classes of these sets in (X, \mathcal{T}) by \mathcal{T}_{α} , $SO(\mathcal{T})$ and $PO(\mathcal{T})$ respectively. They are all larger than \mathcal{T} and closed under forming arbitrary unions. It was shown in [6] that \mathcal{T}_{α} is a topology on X. The closure and interior of A in $(X, \mathcal{T}_{\alpha})$ are denoted by $cl_{\alpha}A$ and $int_{\alpha}A$. The complement of a semi-open set (resp. preopen set) is called *semi-closed* (resp. *preclosed*). We denote these classes by $SC(\mathcal{T})$ and $PC(\mathcal{T})$. For a subset A of X, the *semi-closure* (resp. *preclosure*) of A, denoted by sclA (resp. pclA), is the intersection of all semi-closed (resp. preclosed) subsets of X

²⁰²⁰ Mathematics Subject Classification: 54A10

Keywords and phrases: Preopen set; topology \mathcal{T}_{α} ; topology \mathcal{T}_{γ} ; topology \mathcal{T}_{M} .

that contain A. The semi-interior (resp. preinterior) of A, denoted by sintA (resp. pintA), is the union of all semi-open (resp. preopen) subsets of X contained in A.

Although the classes $SO(\mathcal{T})$ and $PO(\mathcal{T})$ are not topologies on X in general, they generate a topology in a natural way. Let $\mathcal{T}(\mathcal{A}) = \{G \in \mathcal{A} \mid G \cap A \in \mathcal{A} \text{ whenever } A \in \mathcal{A}\}$ where \mathcal{A} stands for $SO(\mathcal{T})$ and $PO(\mathcal{T})$. It is clear that $\mathcal{T}(\mathcal{A})$ is a topology on X that is larger than \mathcal{T} and $\{x\} \in \mathcal{T}(\mathcal{A})$ if $\{x\} \in \mathcal{A}$. It was shown in [6] that $\mathcal{T}(\mathcal{A}) = \mathcal{T}_{\alpha}$ for $\mathcal{A} = SO(\mathcal{T})$. The topology generated in this way by $PO(\mathcal{T})$ was studied in [1] and denoted by \mathcal{T}_{γ} . The closure and the interior of a set A in $(X, \mathcal{T}_{\gamma})$ are denoted by $cl_{\gamma}A$ and $int_{\gamma}A$. Further details on $\mathcal{T}(\mathcal{A})$ can be found in [2].

DEFINITION 1.2 ([3]). Two topologies \mathcal{T} and \mathcal{U} on a set X are called PO-equivalent if $PO(\mathcal{T}) = PO(\mathcal{U})$.

The class of all topologies on X that are PO-equivalent to \mathcal{T} is denoted by $P(\mathcal{T})$. For a space (X, \mathcal{T}) let $M = M(\mathcal{T}) = \{x \in X \mid \{x\} \in CO(\mathcal{T}_{\gamma})\}$ and let \mathcal{T}_M be the topology on X that has for a base $\mathcal{T}_{\alpha} \cup \{\{x\} \mid x \in M\}$, i.e. $V \in \mathcal{T}_M$ if and only if $V = G \cup K$ with $G \in \mathcal{T}_{\alpha}$ and $K \subset M$ [3]. The question arose as to whether the class $P(\mathcal{T})$ has the largest member and in [3] it was answered in the negative. It was proved [3, Theorem 2.9] that if $P(\mathcal{T})$ has the largest member, say \mathcal{U} , then $\mathcal{U} = \mathcal{T}_M$. The next example [3] shows that \mathcal{T}_M does not necessarily belong to $P(\mathcal{T})$. Let $X = \mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}$. Set $\mathcal{A} = \{A \subset X \mid z \in A \text{ iff } -z \in A\}$ and let $\mathcal{T} = \{\emptyset, X\} \cup \{G \in \mathcal{A} \mid 0 \notin G \text{ or } X \setminus G \text{ is finite}\}$. Then: (i) \mathcal{T} is a topology on X,

(ii) $PO(\mathcal{T}) = \{\emptyset, X\} \cup \{A \subset X \mid 0 \notin A \text{ or } clA \text{ is open}\},\$

- (iii) $\mathcal{T}_{\gamma} = \{\emptyset, X\} \cup \{A \subset X \mid 0 \notin A \text{ or } X \setminus A \text{ is finite}\},\$
- (iv) $PO(\mathcal{T}_{\gamma}) = \mathcal{T}_{\gamma}$.

If now $S = \{0, 1, 2, ...\}$, then $S \in PO(\mathcal{T}) \setminus PO(\mathcal{T}_{\gamma})$, so \mathcal{T} and \mathcal{T}_{γ} are not *PO*equivalent. On the other hand, since $z \in CO(\mathcal{T}_{\gamma})$ for every $z \neq 0$ we have $\mathcal{T}_M = \mathcal{T}_{\gamma}$. In our case, \mathcal{T}_M does not belong to $P(\mathcal{T})$, i.e. $P(\mathcal{T})$ does not have the largest member.

In this paper we will show that the topology \mathcal{T}_M is indeed the smallest upper bound or supremum of the class $P(\mathcal{T})$.

Now we recall some results that we will need in the sequel.

PROPOSITION 1.3 ([2]). Let A be a subset of a space X. Then:

(i) $cl_{\alpha}A = A \cup cl(int(clA)), int_{\alpha}A = A \cap int(cl(intA)),$

 $(ii) \ sclA = A \cup int(clA), \ sintA = A \cap cl(intA),$

(iii) $pclA = A \cup cl(intA), pintA = A \cap int(clA).$

PROPOSITION 1.4 ([2]). Let A be a subset of a space X. Then $int_{\alpha}cl_{\alpha}A = int(clA)$.

PROPOSITION 1.5 ([6]). Let (X, \mathcal{T}) be a space. Then $\mathcal{T}_{\alpha} = \{U \setminus A \mid U \in \mathcal{T}, A \in N(\mathcal{T})\}.$

PROPOSITION 1.6 ([1]). Let A be a subset of a space X. Then:

(i) $cl_{\gamma}intA = cl(intA), int_{\gamma}clA = int(clA),$ (ii) $pint(cl_{\gamma}A) = cl_{\gamma}A \cap int(clA).$

D. Andrijević

PROPOSITION 1.7 ([1]).] Let A be a subset of a space X. Then: (i) $cl_{\alpha}A = cl_{\gamma}A \cup int(clA)$, (ii) $int_{\alpha}A = int_{\gamma}A \cap cl(intA)$.

PROPOSITION 1.8 ([1]). Let (X, \mathcal{T}) be a space and $A \in \mathcal{T}_{\gamma}$. Then $sint A = int_{\alpha}A$.

PROPOSITION 1.9 ([2]). Let $G \in \mathcal{T}_{\gamma} \ x \in G \setminus cl(intG)$. Then $\{x\} \in PO(\mathcal{T}) \setminus \mathcal{T}$.

PROPOSITION 1.10 ([2]). Let A be a subset of a space (X, \mathcal{T}) and $x \in int(clA) \setminus cl_{\gamma}A$. Then $\{x\} \in PO(\mathcal{T}) \setminus \mathcal{T}$.

PROPOSITION 1.11 ([2]). Let A be a subset of a space (X, \mathcal{T}) . Then $A \in \mathcal{T}_{\gamma}$ if and only if $A = G \cup H$ with $G \in \mathcal{T}_{\alpha}$ and $\{h\} \in PO(\mathcal{T}) \setminus \mathcal{T}$ for every $h \in H$.

PROPOSITION 1.12 ([3]). Let (X, \mathcal{T}) be a space, $A \in CO(\mathcal{T}_{\gamma})$ and \mathcal{U} the topology on X having $\mathcal{T} \cup \{A, X \setminus A\}$ as a subbase. Then $PO(\mathcal{U}) = PO(\mathcal{T})$.

2. Topological space (X, \mathcal{T}_M)

We have already mentioned that our main goal is to show that \mathcal{T}_M is the smallest upper bound of $P(\mathcal{T})$. First, we establish a few lemmas. The operators on a set A in (X, \mathcal{U}) with $\mathcal{U} \in P(\mathcal{T})$ are denoted by $cl_{\mathcal{U}}A$, $int_{\mathcal{U}}A$, $pcl_{\mathcal{U}}A$, etc.

LEMMA 2.1. Let $\mathcal{U} \in P(\mathcal{T})$ and $A \in \mathcal{U}$. Then $cl_{\gamma}A = pclA$.

Proof. Since $\mathcal{U} \in P(\mathcal{T})$, we have that $P(\mathcal{U}) = P(\mathcal{T})$ and so $\mathcal{U} \subset \mathcal{U}_{\gamma} = \mathcal{T}_{\gamma}$. Thus by Proposition 1.3(iii) we have $cl_{\gamma}A \subset cl_{\mathcal{U}}A = A \cup cl_{\mathcal{U}}int_{\mathcal{U}}A = pcl_{\mathcal{U}}A = pcl_{\mathcal{U}}A \subset cl_{\gamma}A$. \Box

LEMMA 2.2. Let $\mathcal{U} \in P(\mathcal{T})$ and $A \in \mathcal{U}$. Then $\{x\} \in PO(\mathcal{T}) \setminus \mathcal{T}$ for every $x \in int(clA) \setminus cl(intA)$.

Proof. By Lemma 2.1 we have that $cl_{\gamma}A = A \cup cl(intA)$ and thus $int(clA) \setminus cl(intA) = (int(clA) \setminus cl_{\gamma}A)) \cup (A \setminus cl(intA))$. Now the statement follows from Propositions 1.9 and 1.10.

LEMMA 2.3. Let $A \in PO(\mathcal{T}) \cap C(\mathcal{T}_{\gamma})$. Then $clA \in \mathcal{T}$.

Proof. Since $cl_{\alpha}A = clA$ for $A \in PO(\mathcal{T})$, applying Proposition 1.7(i) we have that $clA = cl_{\gamma}A \cup int(clA) = A \cup int(clA) = int(clA)$ that is $clA \in \mathcal{T}$.

The next lemma follows immediately from Proposition 1.10.

LEMMA 2.4. Let $\{x\} \in PO(\mathcal{T})$ and $y \in int(cl\{x\}) \setminus cl_{\gamma}\{x\}$. Then $cl\{y\} = cl\{x\}$.

LEMMA 2.5. Let $\mathcal{U} \in P(\mathcal{T})$ and $\{x\} \in PO(\mathcal{T}) \setminus C(\mathcal{T}_{\gamma})$ such that $int(cl\{x\}) \cap cl_{\gamma}\{x\} = \{x\}$. Then $int_{\mathcal{U}}cl_{\mathcal{U}}\{x\} = int(cl\{x\})$.

Proof. First, we note that $cl\{x\} = cl_{\alpha}\{x\} = cl_{\gamma}\{x\} \cup int(cl\{x\})$ by Proposition 1.7. Since $PO(\mathcal{T}) = PO(\mathcal{U})$ implies $\mathcal{T}_{\gamma} = \mathcal{U}_{\gamma}$, we have by Proposition 1.6(ii) that $int_{\mathcal{U}}cl_{\mathcal{U}}\{x\} \cap cl_{\gamma}\{x\} = pint_{\mathcal{U}}cl_{\gamma}\{x\} = pint(cl_{\gamma}\{x\}) = cl_{\gamma}\{x\} \cap int(cl\{x\}) = \{x\}$. Now set $U = cl_{\gamma}\{x\} = cl_{\gamma}\{x\} \cap int(cl_{\gamma}\{x\}) = cl_{\gamma}\{x\}$ $int_{\mathcal{U}}int(cl\{x\})$. Since $int(cl\{x\}) \notin C(\mathcal{T})$, we have that $int(cl\{x\}) \notin PC(\mathcal{T}) = PC(\mathcal{U})$ and therefore $U \neq \emptyset$. On the other hand, since by Lemma 2.4 $clU = cl\{x\} \notin \mathcal{T}$, it follows from Lemma 2.3 that $U \notin C(\mathcal{T}_{\gamma})$ and therefore $U \notin C(\mathcal{U})$. Consequently, $U \notin PC(\mathcal{U}) = PC(\mathcal{T})$ and therefore $intU \neq \emptyset$. Therefore, we have by Lemma 2.4 that $intU = int(cl\{x\})$ and thus $U = int(cl\{x\})$, that is $int(cl\{x\}) \in \mathcal{U}$.

In a similar way, we prove that $int_{\mathcal{U}}cl_{\mathcal{U}}\{x\} \in \mathcal{T}$ and thus $int(cl\{x\}) \cap int_{\mathcal{U}}cl_{\mathcal{U}}\{x\}$ is open in both \mathcal{T} and \mathcal{U} . Therefore, $int_{\mathcal{U}}cl_{\mathcal{U}}\{x\} = int(cl(\{x\}))$ is again given by Lemma 2.4.

PROPOSITION 2.6. Let $\mathcal{U} \in P(\mathcal{T})$ and $A \in \mathcal{U}$. Then $A \setminus cl(intA) \subset M$.

Proof. Let $A \in \mathcal{U}$ and $x \in A \setminus cl(intA)$. Then $\{x\} \in \mathcal{T}_{\gamma}$ by Proposition 1.9 and assume that $\{x\} \notin C(\mathcal{T}_{\gamma})$. Since $int(cl\{x\}) \subset int(clA) \setminus cl(intA)$, we have by Lemma 2.2 that $int(cl\{x\}) \cap cl_{\gamma}\{x\} = \{x\}$. Now it follows from Lemma 2.5, Proposition 1.6(i) and Lemma 2.1 that $int(cl\{x\}) = int_{\mathcal{U}}cl_{\mathcal{U}}\{x\} \subset cl_{\mathcal{U}}A \setminus cl(intA) = cl_{\mathcal{U}_{\gamma}}A \setminus cl(intA) = cl_{\gamma}A \setminus cl(intA) = (A \cup cl(intA)) \setminus cl(intA) = A \setminus cl(intA)$, a contradiction. Therefore $\{x\} \in C(\mathcal{T}_{\gamma})$ and thus $A \setminus cl(intA) \subset M$.

Now we are in a position to prove [3, Theorem 2.8] without the condition $\mathcal{T} \subset \mathcal{U}$.

PROPOSITION 2.7. Let (X, \mathcal{T}) be a space and $\mathcal{U} \in P(\mathcal{T})$. Then $\mathcal{U} \subset \mathcal{T}_M$.

Proof. Let $A \in \mathcal{U}$. Since $A = sintA \cup (A \setminus cl(intA))$, the statement follows from Propositions 1.8 and 2.6.

COROLLARY 2.8. Let (X, \mathcal{T}) be a space. Then \mathcal{T}_M is the least upper bound of the class $P(\mathcal{T})$.

Proof. Let \mathcal{V} be an upper bound of the class $P(\mathcal{T})$ and suppose that $\{x\} \in CO(\mathcal{T}_{\gamma})$. Then $\{x\} \in \mathcal{V}$ by Proposition 1.12. On the other hand, $\mathcal{T}_{\alpha} \subset \mathcal{V}$ follows from Proposition 1.4 and hence $\mathcal{T}_M \subset \mathcal{V}$.

We conclude our investigation with some further results on \mathcal{T}_M . The closure and the interior of a set A in (X, \mathcal{T}_M) are denoted by $cl_M A$ and $int_M A$.

LEMMA 2.9. Let (X, \mathcal{T}) be a space, and $\{x\} \in CO(\mathcal{T}_{\gamma})$. Then $\{y\} \in CO(\mathcal{T}_{\gamma})$ for every $y \in cl\{x\}$.

Proof. By Lemma 2.3 we have that $cl\{x\} \in \mathcal{T}$ and Proposition 1.10 implies that all singletons in $cl\{x\}$ are preopen in (X, \mathcal{T}) . Therefore all of them are closed-and-open in $(X, \mathcal{T}_{\gamma})$.

PROPOSITION 2.10. Let (X, \mathcal{T}) be a space. Then $N(\mathcal{T}_M) = N(\mathcal{T})$.

Proof. By Proposition 1.6(i) we have that $int_M cl_M A \subset int_{\gamma} clA = int(clA)$ and thus $N(\mathcal{T}) \subset N(\mathcal{T}_M)$. To prove the reverse inclusion, assume that $int_M cl_M A = \emptyset$ and $int(clA) \neq \emptyset$. Let $x \in U = int(clA) \setminus cl_M A$. Then $U \in \mathcal{T}_M$, $intU = \emptyset$ and thus $\{x\} \in CO(\mathcal{T}_{\gamma})$. Then by Lemma 2.3 $cl\{x\} \in \mathcal{T}$ and thus $cl\{x\} \cap A \neq \emptyset$. So by Lemma 2.9 $int_M A \neq \emptyset$, a contradiction. Therefore, $int(clA) = \emptyset$, i.e. $N(\mathcal{T}_M) \subset N(\mathcal{T})$.

D. Andrijević

COROLLARY 2.11. Let (X, \mathcal{T}) be a space and $x \in X$. Then $\{x\} \in PO(\mathcal{T})$ if and only if $\{x\} \in PO(\mathcal{T}_M)$.

PROPOSITION 2.12. Let (X, \mathcal{T}) be a space. Then: (i) $\mathcal{T}_{M\alpha} = \mathcal{T}_M$, (ii) $\mathcal{T}_{M\gamma} = \mathcal{T}_{\gamma}$, (iii) $\mathcal{T}_{MM} = \mathcal{T}_M$.

Proof. (i) By Proposition 1.5 it suffices to show that every nowhere dense set in (X, \mathcal{T}_M) is closed in (X, \mathcal{T}_M) and from Proposition 2.10 we have that $N(\mathcal{T}_M) = N(\mathcal{T}) \subset C(\mathcal{T}_\alpha) \subset C(\mathcal{T}_M)$.

(ii) Suppose that $A \in \mathcal{T}_{M\gamma}$. Then by Proposition 1.9 we have that $A = G \cup H$ with $G \in \mathcal{T}_{M\alpha}$ and $\{h\} \in PO(\mathcal{T}_M) \setminus \mathcal{T}_M$ for every $h \in H$. Hence $A \in \mathcal{T}_\gamma$ by (i) and Corollary 2.11. To prove the reverse inclusion suppose that $A \in \mathcal{T}_\gamma$. Then by Proposition 1.11 we have that $A = G \cup H$ with $G \in \mathcal{T}_\alpha$ and $\{h\} \in PO(\mathcal{T}) \setminus \mathcal{T}$ for every $h \in H$. By Corollary 2.11 we have that $\{h\} \in PO(\mathcal{T}_M)$ that is $\{h\} \in \mathcal{T}_{M\gamma}$ and so $A \in \mathcal{T}_{M\gamma}$.

(iii) Let $A \in \mathcal{T}_{MM}$. Then $A = G \cup H$ with $G \in \mathcal{T}_{M\alpha}$ and $\{h\} \in CO(\mathcal{T}_{M\gamma})$ for every $h \in H$. Now the statement follows from (i) and (ii).

References

- [1] D. Andrijević, On the topology generated by preopen sets, Mat. Vesnik, 39 (1987), 367–376.
- [2] D. Andrijević, On a topology between \mathcal{T}_{α} and $\mathcal{T}_{\gamma\alpha}$, Filomat, **33(10)** (2019), 3209–3221.
- [3] D. Andrijević, M. Ganster, On PO-equivalent topologies, Suppl. Rend. Circ. Mat. Palermo, 24 (1990), 251–256.
- [4] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70 (1963), 36–41.
- [5] A. S. Mashhour, M. E. Abd El-Monsef, S. N. El-Deeb, On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt, 53 (1982), 47–53.
- [6] O. Njåstad, On some classes of nearly open sets, Pacific J. Math., 15 (1965), 961–970.

(received 13.07.2022; in revised form 28.09.2023; available online 10.09.2024)

University of Belgrade - Faculty of Agriculture, Beograd - Zemun, Nemanjina 6, SerbiaE-mail:adimitri@agrif.bg.ac.rs

ORCID iD: https://orcid.org/0000-0001-6868-2544