MATEMATIČKI VESNIK МАТЕМАТИЧКИ ВЕСНИК Corrected proof Available online 10.09.2024

research paper оригинални научни рад DOI: 10.57016/MV-90Pjfk2Q

A NOTE ON PO-EQUIVALENT TOPOLOGIES

Dimitrije Andrijević

Abstract. Two topologies on a set X are called PO-equivalent if their families of preopen sets concide. Let $P(\mathcal{T})$ stand for the class of all topologies on X which are PO-equivalent to T and denote by \mathcal{T}_M the topology on X having for a base $\mathcal{T}_{\alpha} \cup \{\{x\} \mid \{x\} \text{ is closed-and-}$ open in \mathcal{T}_{γ} . It was proved in [Andrijević, M. Ganster, On PO-equivalent topologies, Suppl. Rend. Circ. Mat. Palermo, 24 (1990), 251–256 that the class $P(\mathcal{T})$ does not have the largest member in general. Precisely, if $P(\mathcal{T})$ has the largest member, say U, then $\mathcal{U} = \mathcal{T}_M$. On the other hand, it was shown that \mathcal{T}_M does not necessarily belong to $P(\mathcal{T})$. In this paper we are going to show that the topology \mathcal{T}_M is actually the least upper bound of the class $P(\mathcal{T})$.

1. Introduction

Let A be a subset of a topological space (X, \mathcal{T}) . We denote the closure and the interior of A in (X, \mathcal{T}) by clA and intA respectively. The class of closed sets (resp. closed-and-open sets) in (X, \mathcal{T}) is denoted by $C(\mathcal{T})$ (resp. $CO(\mathcal{T})$). The class of nowhere dense sets in (X, \mathcal{T}) is denoted by $N(\mathcal{T})$.

DEFINITION 1.1. A subset A of a space X is called: (i) an α -set if $A \subset int(cl(intA))$ ([\[6\]](#page-4-0)), (ii) semi-open if $A \subset cl(intA)$ ([\[4\]](#page-4-1)),

(iii) preopen if $A \subset int(clA)$ ([\[5\]](#page-4-2)).

We denote the classes of these sets in (X, \mathcal{T}) by \mathcal{T}_{α} , $SO(\mathcal{T})$ and $PO(\mathcal{T})$ respectively. They are all larger than T and closed under forming arbitrary unions. It was shown in [\[6\]](#page-4-0) that \mathcal{T}_{α} is a topology on X. The closure and interior of A in $(X, \mathcal{T}_{\alpha})$ are denoted by $cl_{\alpha}A$ and $int_{\alpha}A$. The complement of a semi-open set (resp. preopen set) is called *semi-closed* (resp. preclosed). We denote these classes by $SC(\mathcal{T})$ and $PC(\mathcal{T})$. For a subset A of X, the semi-closure (resp. preclosure) of A, denoted by \mathfrak{solA} (resp. \mathfrak{polA}), is the intersection of all semi-closed (resp. preclosed) subsets of X

²⁰²⁰ Mathematics Subject Classification: 54A10

Keywords and phrases: Preopen set; topology \mathcal{T}_{α} ; topology \mathcal{T}_{γ} ; topology \mathcal{T}_{M} .

that contain A. The *semi-interior* (resp. *preinterior*) of A, denoted by $\sin tA$ (resp. $pintA$, is the union of all semi-open (resp. preopen) subsets of X contained in A.

Although the classes $SO(\mathcal{T})$ and $PO(\mathcal{T})$ are not topologies on X in general, they generate a topology in a natural way. Let $\mathcal{T}(\mathcal{A}) = \{G \in \mathcal{A} \mid G \cap A \in \mathcal{A} \text{ whenever } A \in$ \mathcal{A} where A stands for $SO(\mathcal{T})$ and $PO(\mathcal{T})$. It is clear that $\mathcal{T}(\mathcal{A})$ is a topology on X that is larger than $\mathcal T$ and $\{x\} \in \mathcal T(\mathcal A)$ if $\{x\} \in \mathcal A$. It was shown in [\[6\]](#page-4-0) that $\mathcal T(\mathcal A) = \mathcal T_\alpha$ for $A = SO(T)$. The topology generated in this way by $PO(T)$ was studied in [\[1\]](#page-4-3) and denoted by \mathcal{T}_{γ} . The closure and the interior of a set A in $(X, \mathcal{T}_{\gamma})$ are denoted by $cl_{\gamma}A$ and $int_{\gamma}A$. Further details on $\mathcal{T}(\mathcal{A})$ can be found in [\[2\]](#page-4-4).

DEFINITION 1.2 ([\[3\]](#page-4-5)). Two topologies $\mathcal T$ and $\mathcal U$ on a set X are called PO-equivalent if $PO(\mathcal{T}) = PO(\mathcal{U}).$

The class of all topologies on X that are PO-equivalent to $\mathcal T$ is denoted by $P(\mathcal T)$. For a space (X, \mathcal{T}) let $M = M(\mathcal{T}) = \{x \in X \mid \{x\} \in CO(\mathcal{T})\}$ and let \mathcal{T}_M be the topology on X that has for a base $\mathcal{T}_{\alpha} \cup \{\{x\} \mid x \in M\}$, i.e. $V \in \mathcal{T}_{M}$ if and only if $V = G \cup K$ with $G \in \mathcal{T}_{\alpha}$ and $K \subset M$ [\[3\]](#page-4-5). The question arose as to whether the class $P(\mathcal{T})$ has the largest member and in [\[3\]](#page-4-5) it was answered in the negative. It was proved [\[3,](#page-4-5) Theorem 2.9] that if $P(\mathcal{T})$ has the largest member, say U, then $U = \mathcal{T}_M$. The next example [\[3\]](#page-4-5) shows that \mathcal{T}_M does not necessarily belong to $P(\mathcal{T})$. Let $X = \mathbf{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}$. Set $\mathcal{A} = \{A \subset X \mid z \in A \text{ iff } -z \in A\}$ and let $\mathcal{T} = \{\emptyset, X\} \cup \{G \in \mathcal{A} \mid 0 \notin G \text{ or } X \setminus G \text{ is finite}\}.$ Then: (i) $\mathcal T$ is a topology on X,

(ii) $PO(\mathcal{T}) = \{\emptyset, X\} \cup \{A \subset X \mid 0 \notin A \text{ or } cIA \text{ is open}\},\$

- (iii) $\mathcal{T}_{\gamma} = \{\emptyset, X\} \cup \{A \subset X \mid 0 \notin A \text{ or } X \setminus A \text{ is finite}\},\$
- (iv) $PO(\mathcal{T}_{\gamma}) = \mathcal{T}_{\gamma}$.

If now $S = \{0, 1, 2, ...\}$, then $S \in PO(\mathcal{T}) \setminus PO(\mathcal{T}_\gamma)$, so $\mathcal T$ and $\mathcal T_\gamma$ are not POequivalent. On the other hand, since $z \in CO(\mathcal{T}_{\gamma})$ for every $z \neq 0$ we have $\mathcal{T}_{M} = \mathcal{T}_{\gamma}$. In our case, \mathcal{T}_M does not belong to $P(\mathcal{T})$, i.e. $P(\mathcal{T})$ does not have the largest member.

In this paper we will show that the topology \mathcal{T}_M is indeed the smallest upper bound or supremum of the class $P(\mathcal{T})$.

Now we recall some results that we will need in the sequel.

PROPOSITION 1.3 ([\[2\]](#page-4-4)). Let A be a subset of a space X. Then:

(i) $cl_{\alpha}A = A \cup cl(int(clA)), int_{\alpha}A = A \cap int(cl(intA)),$

(ii) $sclA = A \cup int(clA), \, sintA = A \cap cl(intA),$

(iii) $pclA = A \cup cl(intA)$, $pintA = A \cap int(clA)$.

PROPOSITION 1.4 ([\[2\]](#page-4-4)). Let A be a subset of a space X. Then $int_{\alpha} cl_{\alpha} A = int(cl A)$.

PROPOSITION 1.5 ([\[6\]](#page-4-0)). Let (X, \mathcal{T}) be a space. Then $\mathcal{T}_{\alpha} = \{U \setminus A \mid U \in \mathcal{T}, A \in N(\mathcal{T})\}.$

PROPOSITION 1.6 ([\[1\]](#page-4-3)). Let A be a subset of a space X. Then:

(i) $cl_{\gamma}int A = cl(int A), int_{\gamma}cl A = int(cl A),$ (ii) $pint(cl_{\gamma}A) = cl_{\gamma}A \cap int(cl A).$

D. Andrijević 3

PROPOSITION 1.7 ([\[1\]](#page-4-3)). *]* Let A be a subset of a space X. Then: (i) $cl_{\alpha}A = cl_{\gamma}A \cup int(clA),$ (ii) $int_{\alpha}A = int_{\gamma}A \cap cl(intA).$

PROPOSITION 1.8 ([\[1\]](#page-4-3)). Let (X, \mathcal{T}) be a space and $A \in \mathcal{T}_{\gamma}$. Then $\sin t A = \int t \alpha A$.

PROPOSITION 1.9 ([\[2\]](#page-4-4)). Let $G \in \mathcal{T}_{\gamma}$ $x \in G \setminus cl(intG)$. Then $\{x\} \in PO(\mathcal{T}) \setminus \mathcal{T}$.

PROPOSITION 1.10 ([\[2\]](#page-4-4)). Let A be a subset of a space (X, \mathcal{T}) and $x \in int(clA) \setminus cl_{\gamma}A$. Then $\{x\} \in PO(\mathcal{T}) \setminus \mathcal{T}$.

PROPOSITION 1.11 ([\[2\]](#page-4-4)). Let A be a subset of a space (X, \mathcal{T}) . Then $A \in \mathcal{T}_{\gamma}$ if and only if $A = G \cup H$ with $G \in \mathcal{T}_{\alpha}$ and $\{h\} \in PO(\mathcal{T}) \setminus \mathcal{T}$ for every $h \in H$.

PROPOSITION 1.12 ([\[3\]](#page-4-5)). Let (X, \mathcal{T}) be a space, $A \in CO(\mathcal{T}_{\gamma})$ and U the topology on X having $\mathcal{T} \cup \{A, X \setminus A\}$ as a subbase. Then $PO(\mathcal{U}) = PO(\mathcal{T})$.

2. Topological space (X, \mathcal{T}_M)

We have already mentioned that our main goal is to show that \mathcal{T}_M is the smallest upper bound of $P(\mathcal{T})$. First, we establish a few lemmas. The operators on a set A in (X, \mathcal{U}) with $\mathcal{U} \in P(\mathcal{T})$ are denoted by $cl_{\mathcal{U}}A$, $int_{\mathcal{U}}A$, $pcl_{\mathcal{U}}A$, etc.

LEMMA 2.1. Let $\mathcal{U} \in P(\mathcal{T})$ and $A \in \mathcal{U}$. Then $cl_{\gamma}A = pclA$.

Proof. Since $U \in P(\mathcal{T})$, we have that $P(U) = P(\mathcal{T})$ and so $U \subset U_{\gamma} = \mathcal{T}_{\gamma}$. Thus by [Proposition 1.3](#page-1-0)[\(iii\)](#page-1-1) we have $cl_{\gamma}A \subset cl_{\mathcal{U}}A = A \cup cl_{\mathcal{U}}int_{\mathcal{U}}A = pcl_{\mathcal{U}}A = pcl_{\mathcal{A}} \subset cl_{\gamma}A$. \Box

LEMMA 2.2. Let $U \in P(\mathcal{T})$ and $A \in \mathcal{U}$. Then $\{x\} \in PO(\mathcal{T}) \setminus \mathcal{T}$ for every $x \in$ $int(clA) \setminus cl(intA).$

Proof. By [Lemma 2.1](#page-2-0) we have that $cl_{\gamma}A = A \cup cl(intA)$ and thus $int(clA) \langle cl(intA) =$ $(int(clA) \ (cl_{\gamma}A)) \cup (A \ (d(intA)).$ Now the statement follows from Propositions [1.9](#page-2-1) and [1.10.](#page-2-2) \Box

LEMMA 2.3. Let $A \in PO(\mathcal{T}) \cap C(\mathcal{T}_{\gamma})$. Then $clA \in \mathcal{T}$.

Proof. Since $cl_{\alpha}A = clA$ for $A \in PO(\mathcal{T})$, applying [Proposition 1.7](#page-2-3)[\(i\)](#page-2-4) we have that $clA = cl_{\gamma}A \cup int(clA) = A \cup int(clA) = int(clA)$ that is $clA \in \mathcal{T}$.

The next lemma follows immediately from [Proposition 1.10.](#page-2-2)

LEMMA 2.4. Let $\{x\} \in PO(\mathcal{T})$ and $y \in int(cl\{x\}) \setminus cl_{\gamma}\{x\}$. Then $cl\{y\} = cl\{x\}$.

LEMMA 2.5. Let $\mathcal{U} \in P(\mathcal{T})$ and $\{x\} \in PO(\mathcal{T}) \setminus C(\mathcal{T}_{\gamma})$ such that $int(cl\{x\}) \cap cl_{\gamma}\{x\} =$ ${x}.$ Then $int_{U} cl_{U} {x} = int(cl{x}).$

Proof. First, we note that $cl\{x\} = cl_{\alpha}\{x\} = cl_{\gamma}\{x\} \cup int(cl\{x\})$ by [Proposition 1.7.](#page-2-3) Since $PO(\mathcal{T}) = PO(\mathcal{U})$ implies $\mathcal{T}_{\gamma} = \mathcal{U}_{\gamma}$, we have by [Proposition 1.6](#page-1-2)[\(ii\)](#page-1-3) that $int_{\mathcal{U}} cl_{\mathcal{U}} \{x\} \cap$ $cl_{\gamma}{x} = pint_{\mathcal{U}}cl_{\gamma}{x} = pint(cl_{\gamma}{x}) = cl_{\gamma}{x} \cap int(cl{x}) = {x}.$ Now set $U =$

int_U int(cl{x}). Since $int(cl\{x\}) \notin C(\mathcal{T})$, we have that $int(cl\{x\}) \notin PC(\mathcal{T}) = PC(\mathcal{U})$ and therefore $U \neq \emptyset$. On the other hand, since by [Lemma 2.4](#page-2-5) $dU = cl\{x\} \notin \mathcal{T}$, it follows from [Lemma 2.3](#page-2-6) that $U \notin C(\mathcal{T}_{\gamma})$ and therefore $U \notin C(\mathcal{U})$. Consequently, $U \notin PC(U) = PC(\mathcal{T})$ and therefore int $U \neq \emptyset$. Therefore, we have by [Lemma 2.4](#page-2-5) that $intU = int(cl\{x\})$ and thus $U = int(cl\{x\})$, that is $int(cl\{x\}) \in U$.

In a similar way, we prove that $int_{U} cl_{U} \{x\} \in \mathcal{T}$ and thus $int_{U} cl_{U} \{x\}$ is open in both $\mathcal T$ and $\mathcal U$. Therefore, $int_{\mathcal U} cl_{\mathcal U}\{x\} = int(cl(\{x\}))$ is again given by [Lemma 2.4.](#page-2-5) \Box

PROPOSITION 2.6. Let $\mathcal{U} \in P(\mathcal{T})$ and $A \in \mathcal{U}$. Then $A \setminus cl(intA) \subset M$.

Proof. Let $A \in \mathcal{U}$ and $x \in A \setminus cl(intA)$. Then $\{x\} \in \mathcal{T}_{\gamma}$ by [Proposition 1.9](#page-2-1) and assume that $\{x\} \notin C(\mathcal{T}_{\gamma})$. Since $int(cl\{x\}) \subset int(cl\{A) \setminus cl(intA)$, we have by [Lemma 2.2](#page-2-7) that $int(cl\{x\}) \cap cl_{\gamma}\{x\} = \{x\}.$ Now it follows from [Lemma 2.5,](#page-2-8) [Proposition 1.6](#page-1-2)[\(i\)](#page-1-4) and [Lemma 2.1](#page-2-0) that $int(cl\{x\}) = int_{U} cl_{U} {\x\} \subset cl_{U} A \setminus cl(intA) = cl_{U_{\alpha}} A \setminus cl(intA) =$ $cl_{\gamma}A \setminus cl(intA) = (A \cup cl(intA)) \setminus cl(intA) = A \setminus cl(intA)$, a contradiction. Therefore $\{x\} \in C(\mathcal{T}_{\gamma})$ and thus $A \setminus cl(intA) \subset M$. □

Now we are in a position to prove [\[3,](#page-4-5) Theorem 2.8] without the condition $\mathcal{T} \subset \mathcal{U}$.

PROPOSITION 2.7. Let (X, \mathcal{T}) be a space and $\mathcal{U} \in P(\mathcal{T})$. Then $\mathcal{U} \subset \mathcal{T}_M$.

Proof. Let $A \in \mathcal{U}$. Since $A = \sin\theta A \cup (A \setminus cl(\theta A))$, the statement follows from Propositions [1.8](#page-2-9) and [2.6.](#page-3-0) \Box

COROLLARY 2.8. Let (X, \mathcal{T}) be a space. Then \mathcal{T}_M is the least upper bound of the class $P(\mathcal{T})$.

Proof. Let V be an upper bound of the class $P(\mathcal{T})$ and suppose that $\{x\} \in CO(\mathcal{T}_{\gamma})$. Then $\{x\} \in V$ by [Proposition 1.12.](#page-2-10) On the other hand, $\mathcal{T}_{\alpha} \subset V$ follows from Proposition 1.4 and hance $\mathcal{T}_{\alpha} \subset V$ [sition 1.4](#page-1-5) and hence $\mathcal{T}_M \subset \mathcal{V}$.

We conclude our investigation with some further results on \mathcal{T}_M . The closure and the interior of a set A in (X, \mathcal{T}_M) are denoted by $\mathcal{C}_M A$ and $\mathcal{M}_M A$.

LEMMA 2.9. Let (X, \mathcal{T}) be a space, and $\{x\} \in CO(\mathcal{T}_{\gamma})$. Then $\{y\} \in CO(\mathcal{T}_{\gamma})$ for every $y \in cl\{x\}.$

Proof. By [Lemma 2.3](#page-2-6) we have that $cl\{x\} \in \mathcal{T}$ and [Proposition 1.10](#page-2-2) implies that all singletons in $cl\{x\}$ are preopen in (X,\mathcal{T}) . Therefore all of them are closed-and-open in (X, \mathcal{T}_γ) .

PROPOSITION 2.10. Let (X, \mathcal{T}) be a space. Then $N(\mathcal{T}_M) = N(\mathcal{T})$.

Proof. By [Proposition 1.6](#page-1-2)[\(i\)](#page-1-4) we have that $int_M cl_M A \subset int_{\gamma} c A = int(cA)$ and thus $N(\mathcal{T}) \subset N(\mathcal{T}_M)$. To prove the reverse inclusion, assume that $int_M c_M A = \emptyset$ and $int(clA) \neq \emptyset$. Let $x \in U = int(clA) \setminus cl_M A$. Then $U \in \mathcal{T}_M$, $intU = \emptyset$ and thus $\{x\} \in$ $CO(\mathcal{T}_{\gamma})$. Then by [Lemma 2.3](#page-2-6) $cl\{x\} \in \mathcal{T}$ and thus $cl\{x\} \cap A \neq \emptyset$. So by [Lemma 2.9](#page-3-1) $int_M A \neq \emptyset$, a contradiction. Therefore, $int(clA) = \emptyset$, i.e. $N(\mathcal{T}_M) \subset N(\mathcal{T})$.

D. Andrijević 5

COROLLARY 2.11. Let (X, \mathcal{T}) be a space and $x \in X$. Then $\{x\} \in PO(\mathcal{T})$ if and only if $\{x\} \in PO(\mathcal{T}_M)$.

PROPOSITION 2.12. Let (X, \mathcal{T}) be a space. Then: (i) $\mathcal{T}_{M\alpha} = \mathcal{T}_M$, (ii) $\mathcal{T}_{M\gamma} = \mathcal{T}_{\gamma}$, (iii) $\mathcal{T}_{MM} = \mathcal{T}_M$.

Proof. [\(i\)](#page-4-6) By [Proposition 1.5](#page-1-6) it suffices to show that every nowhere dense set in (X, \mathcal{T}_M) is closed in (X, \mathcal{T}_M) and from [Proposition 2.10](#page-3-2) we have that $N(\mathcal{T}_M)$ = $N(\mathcal{T}) \subset C(\mathcal{T}_{\alpha}) \subset C(\mathcal{T}_{M}).$

[\(ii\)](#page-4-7) Suppose that $A \in \mathcal{T}_{M\gamma}$. Then by Proposition 1.9 we have that $A = G \cup H$ with $G \in \mathcal{T}_{M\alpha}$ and $\{h\} \in PO(\mathcal{T}_M) \setminus \mathcal{T}_M$ for every $h \in H$. Hence $A \in \mathcal{T}_{\gamma}$ by [\(i\)](#page-4-6) and [Corollary 2.11.](#page-4-8) To prove the reverse inclusion suppose that $A \in \mathcal{T}_{\gamma}$. Then by [Proposition 1.11](#page-2-11) we have that $A = G \cup H$ with $G \in \mathcal{T}_{\alpha}$ and $\{h\} \in PO(\mathcal{T}) \setminus \mathcal{T}$ for every $h \in H$. By [Corollary 2.11](#page-4-8) we have that $\{h\} \in PO(\mathcal{T}_M)$ that is $\{h\} \in \mathcal{T}_{M\gamma}$ and so $A \in \mathcal{T}_{M\gamma}$.

[\(iii\)](#page-4-7) Let $A \in \mathcal{T}_{MM}$. Then $A = G \cup H$ with $G \in \mathcal{T}_{M\alpha}$ and $\{h\} \in CO(\mathcal{T}_{M\gamma})$ for every $h \in H$. Now the statement follows from [\(i\)](#page-4-6) and [\(ii\).](#page-4-7)

REFERENCES

- [1] D. Andrijević, On the topology generated by preopen sets, Mat. Vesnik, 39 (1987), 367-376.
- [2] D. Andrijević, On a topology between \mathcal{T}_{α} and $\mathcal{T}_{\gamma\alpha}$, Filomat, 33(10) (2019), 3209–3221.
- [3] D. Andrijević, M. Ganster, On PO-equivalent topologies, Suppl. Rend. Circ. Mat. Palermo, 24 (1990), 251–256.
- [4] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70 (1963), 36–41.
- [5] A. S. Mashhour, M. E. Abd El-Monsef, S. N. El-Deeb, On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt, 53 (1982), 47–53.
- [6] O. Njåstad, On some classes of nearly open sets, Pacific J. Math., 15 (1965), 961–970.

(received 13.07.2022; in revised form 28.09.2023; available online 10.09.2024)

University of Belgrade - Faculty of Agriculture, Beograd - Zemun, Nemanjina 6, Serbia E-mail: adimitri@agrif.bg.ac.rs

ORCID iD:<https://orcid.org/0000-0001-6868-2544>