MATEMATIČKI VESNIK МАТЕМАТИЧКИ ВЕСНИК Corrected proof Available online 21.08.2024

research paper оригинални научни рад DOI: 10.57016/MV-YOGY6499

CLOSURE OPERATIONS AND TERNARY RELATIONS

Chandan Chattopadhyay

Abstract. In this paper, the concept of a ternary relation (named as C-relation) is introduced. It is observed that every closure operator can be used to define a C-relation and conversely, any C-relation induces a closure operator. Thus, topological concepts can be studied in terms of relations.

1. Introduction

It is well known that binary relations play an important role in the study of uniformity $[1, 2, 6]$ $[1, 2, 6]$ $[1, 2, 6]$ and proximity $[4, 5]$ $[4, 5]$. A uniformity on X is a family of binary relations on X. A proximity on X is a binary relation on $P(X)$, where $P(X)$ denotes the power set of X. In the study of proximity spaces, we have seen that a topology can be generated by considering binary relations that satisfy certain axioms.

It should be noted that:

(i) A function cl : $P(X) \rightarrow P(X)$ is called a closure operator [\[3\]](#page-4-5) if

cl(\emptyset) = \emptyset , $A \subseteq B \Rightarrow c1A \subseteq c1B$, for all $A \subseteq X, B \subseteq X$, $A \subseteq$ cl A, for all $A \subseteq X$, cl($A \cup B$) \subseteq cl $A \cup$ cl B , for all $A \subseteq X$, $B \subseteq X$, $cl(cl A) = cl A$, for all $A \subseteq X$.

(ii) A closure operator cl : $P(X) \to P(X)$ generates a topology on X and vice versa, for a topology on X there is a closure operator cl : $P(X) \to P(X)$ that generates the given topology.

Section [2](#page-0-0) examines a ternary relation (called C-relation) that satisfies certain axioms. The third section examines the following:

(i) conditions imposed on the C-relation for respective topological structures,

(ii) the concept of C-continuous function and its relation to continuous functions and

(iii) a new characterization of compact spaces.

²⁰²⁰ Mathematics Subject Classification: 54A05, 06A15

Keywords and phrases: Relation; uniform space; proximity space; connectedness; separability.

2 Closure operations and ternary relations

2. Concept of C-relation

Let Y be a non-empty set. Consider a subset ρ of the Cartesian product $P(Y) \times Y \times P(Y)$ satisfying the following axioms.

 $C(i)$: $(A, t, B) \in \rho \Rightarrow A \cap B \neq \emptyset$ for all non-empty subsets A and B of Y and $t \in Y$.

 $C(i)$: $t \in A \cap B \Rightarrow (A, t, B) \in \rho$ for all $A, B \subseteq Y$ and $t \in Y$.

 $C(iii)$: $(A, t, B) \in \rho$ and $A \subseteq D$, $B \subseteq F \Rightarrow (D, t, F) \in \rho$ for all $A, B, D, F \subseteq Y$ and $t \in Y$.

 $C(iv) : (A \cup B, t, D) \in \rho \Rightarrow (A, t, D) \in \rho$ or $(B, t, D) \in \rho$ for all $A, B, D \subseteq Y$ and $t \in Y$.

 $C(v)$: Let $(A, t, B) \in \rho$ and $D \subseteq A \cap B$. If $(D, y, D) \in \rho \forall y \in A \cap B$ then $(D, t, D) \in \rho$, for all $A, B \subseteq Y$ and $t \in Y$.

 $C(vi) : (A, t, B) \in \rho \Leftrightarrow (B, t, A) \in \rho$ for all $A, B \subseteq Y$ and $t \in Y$.

The subset ρ of $P(Y) \times Y \times P(Y)$ satisfying the above axioms is said to be a C-relation on Y. From [C\(v\),](#page-1-0) [C\(ii\)](#page-1-1) and [C\(i\)](#page-1-2) we observe that if $(A, t, B) \in \rho$ then $(A \cap B, t, A \cap B) \in \rho$.

EXAMPLE 2.1. Consider $Y = \{a, b\}$. Let $\rho = \{(\{a\}, a, \{a\}), (\{a\}, b, \{a\}), (\{b\}, b, \{b\})\}$, $({a}, a, Y),({a}, b, Y),({b}, b, Y),({Y}, a, {a}),({Y}, b, {a}),({Y}, b, {b}),({Y}, a, Y),({Y}, b, Y).$ Then ρ is a C-relation on Y.

THEOREM 2.2. A closure operator cl : $P(Y) \rightarrow P(Y)$ generates a C-relation ρ on Y and this ρ induces the same closure operator.

Proof. Let τ be the topology on Y corresponding to the given closure operator. Define ρ by the rule: $(A, t, B) \in \rho$ iff $t \in \text{cl}(A \cap B)$. Obviously, [C\(i\)](#page-1-2) holds.

For [C\(ii\),](#page-1-1) let $t \in A \cap B$. Then let $t \in cl(A \cap B) \Rightarrow (A, t, B) \in \rho$.

For [C\(iii\)](#page-1-3) let $(A, t, B) \in \rho$ and $A \subseteq D, B \subseteq F$. Then $t \in \text{cl}(A \cap B)$. Now $(A \cap B) \subseteq D \cap F \Rightarrow cl(A \cap B) \subseteq cl(D \cap F)$. So $t \in cl(D \cap F) \Rightarrow (D, t, F) \in \rho$.

For [C\(iv\)](#page-1-4) let $(A \cup B, t, D) \in \rho$. Then $t \in \text{cl}(A \cup B) \cap D$ \Rightarrow $t \in \text{cl}(A \cap D) \cup \text{cl}(B \cap D)$ $(D) \Rightarrow t \in \text{cl}(A \cap D)$ or $t \in \text{cl}(B \cap D) \Rightarrow (A, t, D) \in \rho$ or $(B, t, D) \in \rho$.

For [C\(v\)](#page-1-0) let $(A, t, B) \in \rho$ and $D \subseteq A \cap B$. Furthermore, let $(D, y, D) \in \rho \ \forall y \in$ $A \cap B$. Now let $t \in \text{cl}(A \cap B)$ and $\forall y \in A \cap B$, $y \in \text{cl}(D \cap D) = \text{cl}D$. Then $A \cap B \subseteq clD \Rightarrow cl(A \cap B) \subseteq clD$. So $t \in clD = cl(D \cap D) \Rightarrow (D, t, D) \in \rho$.

For [C\(vi\),](#page-1-5) $(A, t, B) \in \rho \Leftrightarrow t \in \text{cl}(A \cap B) \Leftrightarrow t \in \text{cl}(B \cap A) \Leftrightarrow (B, t, A) \in \rho$. Therefore, ρ is a C relation on Y.

Now let ρ be a C-relation on Y. We will first show that ρ induces a closure operator cl : $P(Y) \to P(Y)$. Let $A \subseteq Y$. We define cl A as follows: $t \in \text{cl } A$ iff $(A, t, A) \in \rho$. We will show that 'cl' is a closure operator. Note that $\text{cl } \emptyset = \emptyset$. Now if $t \in A$, then $t \in A \cap A \Rightarrow (A, t, A) \in \rho$ (by [C\(ii\)\)](#page-1-1). Hence $t \in \text{cl } A$. Thus $A \subseteq \text{cl } A$, for all $A \subseteq Y$.

Then let $A \subseteq B \subseteq Y$ and let $t \in \text{cl } A$. Then $(A, t, A) \in \rho$, and since $A \subseteq B$, by [C\(iii\),](#page-1-3) $(B, t, B) \in \rho$. Consequently, $t \in \text{cl } B$, i.e. $\text{cl } A \subseteq \text{cl } B$.

C. Chattopadhyay 3

Now let $t \in \text{cl}(A\cup B)$. Then $(A\cup B, t, A\cup B) \in \rho$. According to $C(iv)$, $(A, t, A\cup B) \in$ ρ or $(B, t, A\cup B) \in \rho$. So by [C\(vi\),](#page-1-5) $(A\cup B, t, A) \in \rho$ or $(A\cup B, t, B) \in \rho$. Through [C\(iv\),](#page-1-4) $(A, t, A) \in \rho$ or $(B, t, A) \in \rho$ or $(A, t, B) \in \rho$ or $(B, t, B) \in \rho$. With $C(vi)$, $(A, t, A) \in \rho$ or $(A, t, B) \in \rho$ or $(B, t, B) \in \rho$. Therefore, $t \in \text{cl } A$ or $(A, t, B) \in \rho$ or $t \in \text{cl } B$. If $(A, t, B) \in \rho$, then $(A \cap B, t, A \cap B) \in \rho$ according to [C\(v\).](#page-1-0) This implies $t \in cl(A \cap B)$. Since cl(A∩B) \subseteq cl A and cl(A∩B) \subseteq cl B (as shown above), it follows that cl(A∪B) \subseteq $cl A \cup clB.$

Now prove that for every $A \subseteq Y$, $cl(clA) = cl A$. Obviously, $cl A \subseteq cl(cl A)$. Let $t \in \text{cl}(c|A)$. Then $(c|A, t, c|A) \in \rho$. Now let $y \in c|A$. Then $(A, y, A) \in \rho$. Thus $A \subseteq \text{cl } A \cap \text{cl } A$ and therefore for all $y \in \text{cl } A \cap \text{cl } A$, we have $(A, y, A) \in \rho$. It then follows from [C\(v\)](#page-1-0) that $(A, t, A) \in \rho$. So $t \in \text{cl } A$. Consequently, $\text{cl}(cl A) \subseteq \text{cl } A$. So cl(cl A) = cl A. Thus 'cl' is a closure operator on Y. Let σ be the corresponding topology on Y generated by this closure operator 'cl'.

As defined above, we now write $t \in cl_{\sigma}(A)$ iff $(A, t, A) \in \rho$. We will now show that $\sigma = \tau$. If we can show that $cl_{\sigma} A = cl_{\tau} A$ for all $A \subset Y$, then our proof is complete.

Let $A \subseteq Y$ and $t \in cl_{\sigma} A$. Then by definition $(A, t, A) \in \rho \Rightarrow t \in cl_{\tau} A$. Thus cl_σ $A \subseteq \text{cl}_{\tau} A$. Now let $t \in \text{cl}_{\tau} A$. Then $t \in \text{cl}_{\tau} (A \cap A) \Rightarrow (A, t, A) \in \rho \Rightarrow t \in \text{cl}_{\sigma} A$.
Therefore cl $A \subseteq \text{cl}_{\tau} A$. Thus cl $A = \text{cl}_{\tau} A$ Therefore $\text{cl}_{\tau} A \subseteq \text{cl}_{\sigma} A$. Thus, $\text{cl}_{\sigma} A = \text{cl}_{\tau} A$.

3. Topological concepts and nature of C-relations

For a closure operator 'cl', the generated topology τ on Y and a C-relation ρ on Y is called a C-joint on Y iff the following holds: $'(A, x, B) \in \rho$ iff $x \in cl_{\tau}(A \cap B)$ ', for any two subsets A and B of Y. If τ and ρ on Y are C-joint on Y, then (Y, τ, ρ) is called a TR-space.

Consider any TR-space (Y, τ, ρ) . The following results in [Theorem 3.1](#page-0-1) can be easily derived.

THEOREM 3.1. (i) A is a closed subset of Y with respect to τ iff $(A, x, A) \notin \rho$ for all $x \in Y - A$.

(ii) τ is indiscrete iff for any non-empty subset A of Y, $(A, x, A) \in \rho$ for all $x \in Y$.

(iii) τ is discrete iff for any $x \in Y$, $(Y - \{x\}, x, Y - \{x\}) \notin \rho$.

(iv) τ is separable iff there exists a countable subset A of Y such that $(A, x, A) \in \rho$ for all $x \in Y$.

(v) τ is disconnected iff there exists a non-empty proper subset A of Y such that $(A, x, A) \notin \rho$ for all $x \in Y - A$ and $(Y - A, x, Y - A) \notin \rho$ for all $x \in A$.

Proof. [\(i\)](#page-2-0) Let A be a closed subset of Y with respect to τ . Let $x \in Y - A$. Then $x \notin A$. Therefore, $x \notin cl_{\tau}(A \cap A)$ (since $A = cl_{\tau} A$). But we have $(A, x, A) \in \rho$ iff $x \in cl_{\tau}(A \cap A)$. Hence it follows that $(A, x, A) \notin \rho$. The 'only if' part follows easily.

[\(ii\)](#page-2-1) Let τ be indiscrete. Let $A \subseteq Y$ and let A be nonempty. Let $x \in Y$. Since $cl_{\tau} A = Y$, we have $x \in cl_{\tau} (A \cap A)$. Since τ and ρ are C-joint, it follows that $(A, x, A) \in \rho$. Conversely, suppose that for any non-empty subset A of Y, $(A, x, A) \in \rho$ for all $x \in Y$. Now τ and ρ are C-joint. Hence, $x \in cl_{\tau}(A \cap A)$ for all $x \in Y$, i.e. $cl_{\tau} A = Y$. So, Y is the only non-empty closed set in τ . Therefore, τ is indiscrete.

[\(iii\)](#page-2-2) Let τ be discrete. Let $x \in Y$. Now $Y - \{x\}$ is closed in τ . So $x \notin cl_{\tau}(Y - \{x\})$, i.e. $x \notin cl_\tau((Y - \{x\}) \cap (Y - \{x\}))$. Since τ and ρ are C-joint, it follows that $(Y - \{x\}, x, Y - \{x\}) \notin \rho$. Conversely, let $(Y - \{x\}, x, Y - \{x\}) \notin \rho$ for every $x \in Y$. Since τ and ρ are C-joint, $x \notin cl_{\tau}((Y - \{x\}) \cap (Y - \{x\}))$ for every $x \in Y$. So, $x \notin cl_{\tau}(Y - \{x\})$ for every $x \in Y$. Hence for each $x \in Y$, $Y - \{x\}$ is closed in τ , i.e. ${x}$ is open in τ for every $x \in Y$. Therefore τ is discrete.

[\(iv\)](#page-2-3) Let τ be separable. Then there exists a countable subset say, A of Y which is dense in τ . Then for each $x \in Y$, $x \in cl_{\tau}A$. So, for each $x \in Y$, $x \in cl_{\tau}(A \cap A)$. Since τ and ρ are C-joint, it follows that $(A, x, A) \in \rho$ for all $x \in Y$. Conversely, Let there exist a countable subset A of Y for which $(A, x, A) \in \rho$ for all $x \in Y$. Clearly $x \in cl_{\tau}(A \cap A)$ for all $x \in Y$. Thus A is dense in τ . Hence τ is separable.

[\(v\)](#page-2-4) Let τ be disconnected. Then there exists a proper subset A of Y which is both open and closed in τ . Now if $x \in Y - A$, then $x \notin cl_{\tau} A$, i.e. $x \notin cl_{\tau} (A \cap A)$, i.e. $(A, x, A) \notin \rho$. similarly, $(Y - A, x, Y - A) \notin \rho$ for all $x \in A$. Conversely, let there exist a non-empty proper subset A of Y such that $(A, x, A) \notin \rho$ for all $x \in Y - A$ and $(Y - A, x, Y - A) \notin \rho$ for all $x \in A$. It follows easily that A and $Y - A$ are both closed in τ . Thus A is both open and closed in τ . Hence τ is disconnected.

DEFINITION 3.2. Let (X, τ, ρ_1) and (Y, σ, ρ_2) be two TR-spaces. A function f: $(X, \tau, \rho_1) \rightarrow (Y, \sigma, \rho_2)$ is called C-continuous if $(A, x, B) \in \rho_1 \Rightarrow (f(A), f(x), f(B)) \in \rho_2$.

THEOREM 3.3. $f : (X, \tau) \to (Y, \sigma)$ is continuous iff $f : (X, \tau, \rho_1) \to (Y, \sigma, \rho_2)$ is C-continuous.

Proof. Let $f : (X, \tau) \to (Y, \sigma)$ be continuous. Let $(A, x, B) \in \rho_1$. We will show that $(f(A), f(x), f(B)) \in \rho_2$. It suffices to show that $f(x) \in cl_{\sigma}(f(A) \cap f(B))$. Let H be any open set in σ that contains $f(x)$. Since f is continuous, $f^{-1}(H) \in \tau$. Now $(A, x, B) \in \rho_1 \Rightarrow x \in \text{cl}_{\tau}(A \cap B)$. Also $x \in f^{-1}(H)$ and therefore $f^{-1}(H) \cap (A \cap B) \neq \emptyset$. Let $z \in f^{-1}(H) \cap (A \cap B)$. Then $f(z) \in H$ and $f(z) \in f(A \cap B)$. So $f(z) \in f(A) \cap f(B)$. Consequently $H \cap f(A) \cap f(B) \neq \emptyset$. Since H is arbitrarily taken from σ , which contains $f(x)$, it follows that $f(x) \in cl_{\sigma}(f(A) \cap f(B))$. This part is therefore proven.

Conversely, let $f : (X, \tau, \rho_1) \to (Y, \sigma, \rho_2)$ be C-continuous. We will show that $f : (X, \tau) \to (Y, \sigma)$ is continuous. It suffices to show that for any subset A of $Y, f(cl_\tau (A)) \subset cl_\sigma f(A)$. Let $A \subseteq Y$. Let $x \in f(cl_\tau (A))$. Then there exists $y \in$ $\text{cl}_{\tau}(A)$ such that $f(y) = x$. Now $y \in \text{cl}_{\tau}(A) \Rightarrow (A, y, A) \in \rho_1$. Now, since f is Ccontinuous, $(f(A), f(y), f(A)) \in \rho_2$. Therefore, $f(y) \in cl_{\sigma}(f(A) \cap f(A)) = cl_{\sigma}(f(A))$ i.e. $x \in \text{cl}_{\sigma} f(A)$. It follows that $f(\text{cl}_{\tau}(A)) \subseteq \text{cl}_{\sigma} f(A)$. This completes the proof. \Box

DEFINITION 3.4. Let (Y, τ, ρ) be a TR-space. A net $\{x_n : n \in D\}$ in Y is said to have a c-cluster point x in Y if for any $A \subseteq Y$ and for any $n \in D$, $(A, x, A) \notin \rho \Rightarrow$ there exists $m \in D$ such that $m \geq n$ and $(A, x_m, A) \notin \rho$.

THEOREM 3.5. Let (Y, τ, ρ) be a TR-space. Then (Y, τ) is compact iff every net in Y has a c-cluster point in Y.

Proof. Let (Y, τ) be compact. If possible, let $\{x_n : n \in D\}$ be a net in Y that has no c-cluster point in Y. Then for each $x \in Y$ there exists $A_x \subseteq Y$ and $n_x \in D$ such that $(A_x, x, A_x) \notin \rho$ but for all $m \in D$ with $m \geq n_x$ we have $(A_x, x_m, A_x) \in \rho$.

Now $(A_x, x, A_x) \notin \rho \Rightarrow x \notin cl(A_x)$ for each $x \in Y$ whereas

$$
(A_x, x_m, A_x) \in \rho_1 \Rightarrow x_m \in cl(A_x) \quad \text{for all} \quad m \in D \quad \text{with} \quad m \ge n_x. \tag{1}
$$

For each $x \in X$ therefore there exists an open set G_x (which contains x) such that

$$
G_x \cap A_x = \emptyset. \tag{2}
$$

Let us now consider the collection $\{G_x : x \in Y\}$. Since (Y, τ) is compact, there exists a finite subcollection say, $G_{x_1}, G_{x_2}, \ldots, G_{x_k}$ from $\{G_x : x \in Y\}$ such that

$$
Y = \bigcup_{i=1}^{k} G_{x_i}.
$$
\n(3)

Consider the corresponding n_{x_i} for each $i = 1, 2, ..., k$. Since D is a directed set, there exists $n \geq n_{x_i}$ for all $i = 1, 2, ..., k$. By [\(3\)](#page-4-6) $x_n \in G_{x_j}$ for some $j = 1, 2, ..., k$. Also by [\(1\)](#page-4-7), $x_n \in clA_{x_i}$ for all $i = 1, 2, \ldots, k$, so that

$$
G_{x_j} \cap A_{x_i} \neq \emptyset \quad \text{for all} \quad i = 1, 2, \dots, k. \tag{4}
$$

But by [\(2\)](#page-4-8), $G_{x_1} \cap A_{x_1} = \emptyset$, $G_{x_2} \cap A_{x_2} = \emptyset$, ..., $G_{x_k} \cap A_{x_k} = \emptyset$. This contradicts with [\(4\)](#page-4-9). It follows that if (Y, τ) is compact, then every net in Y has a c-cluster point in Y .

Conversely, let (Y, τ) not be compact. Then there exists a net $\{x_n : n \in D\}$ in Y that has no cluster point in Y. We claim that $\{x_n : n \in D\}$ has no c-cluster point in Y. If possible, let $\{x_n : n \in D\}$ have a c-cluster point, say x, in Y. We now claim that x is a cluster point of $\{x_n : n \in D\}$. Let G_x be any open set in τ that contains x. Let $n \in D$. Take $A = X - G_x$. Then A is closed in τ . Since $x \notin A = \text{cl } A$, we have $(A, x, A) \notin \rho$. Since x is a c-cluster point of $\{x_n : n \in D\}$, there is $m \in D$ such that $m \ge n$ and $(A, x_m, A) \notin \rho$. So $x_m \notin cl(A) = A = X - G_x \Rightarrow x_m \in G_x$. So for $n \in D$ there is $m \in D$ such that $m \geq n$ and $x_m \in G_x$. Therefore, x is a cluster point of $\{x_n : n \in D\}$. This is a contradiction. This completes the proof.

REFERENCES

- [1] K. D. Joshi, *Introduction to Topology*, Wiley Eastern Ltd., 1983.
- [2] J. L. Kelley, General Topology, Van Nostrand, Princeton, 1955.
- [3] K. Kuratowski, Topology: Volume I, Academic Press, 1966.
- [4] S. A. Naimpally, B. D. Warrack, Proximity Spaces, Cambridge Univ. Press, 2008.
- [5] W. J. Thron, *Topological Structures*, Holt, Rinehart and Winston, 1966.
- [6] S. Willard, General Topology, Addison-Wesley, Reading, 1970.

(received 04.03.2022; in revised form 19.11.2023; available online 21.08.2024)

Department of Mathematics, Narasinha Dutt College, Howrah, West Bengal-711101, India E-mail: chandanmath2011@gmail.com

ORCID iD:<https://orcid.org/0009-0008-0394-9146>