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CLOSURE OPERATIONS AND TERNARY RELATIONS
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Abstract. In this paper, the concept of a ternary relation (named as C-relation) is
introduced. It is observed that every closure operator can be used to define a C-relation
and conversely, any C-relation induces a closure operator. Thus, topological concepts can
be studied in terms of relations.

1. Introduction

It is well known that binary relations play an important role in the study of unifor-
mity [1,2,6] and proximity [4,5]. A uniformity on X is a family of binary relations on
X. A proximity on X is a binary relation on P (X), where P (X) denotes the power set
of X. In the study of proximity spaces, we have seen that a topology can be generated
by considering binary relations that satisfy certain axioms.

It should be noted that:
(i) A function cl : P (X) → P (X) is called a closure operator [3] if

cl(∅) = ∅, A ⊆ B ⇒ clA ⊆ clB, for all A ⊆ X,B ⊆ X,

A ⊆ clA, for all A ⊆ X, cl(A ∪B) ⊆ clA ∪ clB, for all A ⊆ X,B ⊆ X,

cl(clA) = clA, for all A ⊆ X.

(ii) A closure operator cl : P (X) → P (X) generates a topology on X and vice versa,
for a topology on X there is a closure operator cl : P (X) → P (X) that generates the
given topology.

Section 2 examines a ternary relation (called C-relation) that satisfies certain
axioms. The third section examines the following:
(i) conditions imposed on the C-relation for respective topological structures,

(ii) the concept of C-continuous function and its relation to continuous functions and

(iii) a new characterization of compact spaces.
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2 Closure operations and ternary relations

2. Concept of C-relation

Let Y be a non-empty set. Consider a subset ρ of the Cartesian product P (Y )×Y×P (Y )
satisfying the following axioms.
C(i) : (A, t,B) ∈ ρ ⇒ A ∩B ̸= ∅ for all non-empty subsets A and B of Y and t ∈ Y .

C(ii) : t ∈ A ∩B ⇒ (A, t,B) ∈ ρ for all A,B ⊆ Y and t ∈ Y .

C(iii) : (A, t,B) ∈ ρ and A ⊆ D, B ⊆ F ⇒ (D, t, F ) ∈ ρ for all A,B,D, F ⊆ Y and
t ∈ Y .

C(iv) : (A ∪ B, t,D) ∈ ρ ⇒ (A, t,D) ∈ ρ or (B, t,D) ∈ ρ for all A,B,D ⊆ Y and
t ∈ Y .

C(v) : Let (A, t,B) ∈ ρ andD ⊆ A∩B. If (D, y,D) ∈ ρ ∀y ∈ A∩B then (D, t,D) ∈ ρ,
for all A,B ⊆ Y and t ∈ Y .

C(vi) : (A, t,B) ∈ ρ ⇔ (B, t,A) ∈ ρ for all A,B ⊆ Y and t ∈ Y .
The subset ρ of P (Y ) × Y × P (Y ) satisfying the above axioms is said to be a

C-relation on Y . From C(v), C(ii) and C(i) we observe that if (A, t,B) ∈ ρ then
(A ∩B, t,A ∩B) ∈ ρ.

Example 2.1. Consider Y = {a, b}. Let ρ = {({a}, a, {a}), ({a}, b, {a}), ({b}, b, {b}),
({a}, a, Y ), ({a}, b, Y ), ({b}, b, Y ), (Y, a, {a}), (Y, b, {a}), (Y, b, {b}), (Y, a, Y ), (Y, b, Y )}.
Then ρ is a C-relation on Y.

Theorem 2.2. A closure operator cl : P (Y ) → P (Y ) generates a C-relation ρ on Y
and this ρ induces the same closure operator.

Proof. Let τ be the topology on Y corresponding to the given closure operator. Define
ρ by the rule: (A, t,B) ∈ ρ iff t ∈ cl(A ∩B). Obviously, C(i) holds.

For C(ii), let t ∈ A ∩B. Then let t ∈ cl(A ∩B) ⇒ (A, t,B) ∈ ρ.
For C(iii) let (A, t,B) ∈ ρ and A ⊆ D, B ⊆ F . Then t ∈ cl(A ∩ B). Now

(A ∩B) ⊆ D ∩ F ⇒ cl(A ∩B) ⊆ cl(D ∩ F ). So t ∈ cl(D ∩ F ) ⇒ (D, t, F ) ∈ ρ.
For C(iv) let (A∪B, t,D) ∈ ρ. Then t ∈ cl[(A∪B)∩D] ⇒ t ∈ cl(A∩D)∪ cl(B ∩

D) ⇒ t ∈ cl(A ∩D) or t ∈ cl(B ∩D) ⇒ (A, t,D) ∈ ρ or (B, t,D) ∈ ρ.
For C(v) let (A, t,B) ∈ ρ and D ⊆ A ∩ B. Furthermore, let (D, y,D) ∈ ρ ∀y ∈

A ∩ B. Now let t ∈ cl(A ∩ B) and ∀y ∈ A ∩ B, y ∈ cl(D ∩ D) = clD. Then
A ∩B ⊆ clD ⇒ cl(A ∩B) ⊆ clD. So t ∈ clD = cl(D ∩D) ⇒ (D, t,D) ∈ ρ.

For C(vi), (A, t,B) ∈ ρ ⇔ t ∈ cl(A ∩ B) ⇔ t ∈ cl(B ∩ A) ⇔ (B, t, A) ∈ ρ.
Therefore, ρ is a C relation on Y .

Now let ρ be a C-relation on Y . We will first show that ρ induces a closure operator
cl : P (Y ) → P (Y ). Let A ⊆ Y . We define clA as follows: t ∈ clA iff (A, t,A) ∈ ρ.
We will show that ’cl’ is a closure operator. Note that cl ∅ = ∅. Now if t ∈ A, then
t ∈ A ∩A ⇒ (A, t,A) ∈ ρ (by C(ii)). Hence t ∈ clA. Thus A ⊆ clA, for all A ⊆ Y.

Then let A ⊆ B ⊆ Y and let t ∈ clA. Then (A, t,A) ∈ ρ, and since A ⊆ B,
by C(iii), (B, t,B) ∈ ρ. Consequently, t ∈ clB, i.e. clA ⊆ clB.
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Now let t ∈ cl(A∪B). Then (A∪B, t,A∪B) ∈ ρ. According to C(iv), (A, t,A∪B) ∈
ρ or (B, t,A∪B) ∈ ρ. So by C(vi), (A∪B, t,A) ∈ ρ or (A∪B, t,B) ∈ ρ. Through C(iv),
(A, t,A) ∈ ρ or (B, t,A) ∈ ρ or (A, t,B) ∈ ρ or (B, t,B) ∈ ρ. With C(vi), (A, t,A) ∈ ρ
or (A, t,B) ∈ ρ or (B, t,B) ∈ ρ. Therefore, t ∈ clA or (A, t,B) ∈ ρ or t ∈ clB. If
(A, t,B) ∈ ρ, then (A∩B, t,A∩B) ∈ ρ according to C(v). This implies t ∈ cl(A∩B).
Since cl(A∩B) ⊆ clA and cl(A∩B) ⊆ clB (as shown above), it follows that cl(A∪B) ⊆
clA ∪ clB.

Now prove that for every A ⊆ Y , cl(clA) = clA. Obviously, clA ⊆ cl(clA). Let
t ∈ cl(clA). Then (clA, t, clA) ∈ ρ. Now let y ∈ clA. Then (A, y,A) ∈ ρ. Thus
A ⊆ clA ∩ clA and therefore for all y ∈ clA ∩ clA, we have (A, y,A) ∈ ρ. It then
follows from C(v) that (A, t,A) ∈ ρ. So t ∈ clA. Consequently, cl(clA) ⊆ clA. So
cl(clA) = clA. Thus ’cl’ is a closure operator on Y . Let σ be the corresponding
topology on Y generated by this closure operator ’cl’.

As defined above, we now write t ∈ clσ(A) iff (A, t,A) ∈ ρ. We will now show that
σ = τ . If we can show that clσ A = clτ A for all A ⊆ Y , then our proof is complete.

Let A ⊆ Y and t ∈ clσ A. Then by definition (A, t,A) ∈ ρ ⇒ t ∈ clτ A. Thus
clσ A ⊆ clτ A. Now let t ∈ clτ A. Then t ∈ clτ (A ∩ A) ⇒ (A, t,A) ∈ ρ ⇒ t ∈ clσ A.
Therefore clτ A ⊆ clσ A. Thus, clσ A = clτ A. □

3. Topological concepts and nature of C-relations

For a closure operator ’cl’, the generated topology τ on Y and a C-relation ρ on Y is
called a C-joint on Y iff the following holds: ’(A, x,B) ∈ ρ iff x ∈ clτ (A∩B)’, for any
two subsets A and B of Y . If τ and ρ on Y are C-joint on Y , then (Y, τ, ρ) is called a
TR-space.

Consider any TR-space (Y, τ, ρ). The following results in Theorem 3.1 can be
easily derived.

Theorem 3.1. (i) A is a closed subset of Y with respect to τ iff (A, x,A) /∈ ρ for all
x ∈ Y −A.

(ii) τ is indiscrete iff for any non-empty subset A of Y , (A, x,A) ∈ ρ for all x ∈ Y .

(iii) τ is discrete iff for any x ∈ Y , (Y − {x}, x, Y − {x}) /∈ ρ.

(iv) τ is separable iff there exists a countable subset A of Y such that (A, x,A) ∈ ρ
for all x ∈ Y .

(v) τ is disconnected iff there exists a non-empty proper subset A of Y such that
(A, x,A) /∈ ρ for all x ∈ Y −A and (Y −A, x, Y −A) /∈ ρ for all x ∈ A.

Proof. (i) Let A be a closed subset of Y with respect to τ . Let x ∈ Y − A. Then
x /∈ A. Therefore, x /∈ clτ (A ∩ A) (since A = clτ A). But we have (A, x,A) ∈ ρ iff
x ∈ clτ (A ∩A). Hence it follows that (A, x,A) /∈ ρ. The ’only if’ part follows easily.

(ii) Let τ be indiscrete. Let A ⊆ Y and let A be nonempty. Let x ∈ Y . Since
clτ A = Y , we have x ∈ clτ (A ∩ A). Since τ and ρ are C-joint, it follows that
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(A, x,A) ∈ ρ. Conversely, suppose that for any non-empty subset A of Y , (A, x,A) ∈ ρ
for all x ∈ Y . Now τ and ρ are C-joint. Hence, x ∈ clτ (A ∩ A) for all x ∈ Y , i.e.
clτ A = Y . So, Y is the only non-empty closed set in τ . Therefore, τ is indiscrete.

(iii) Let τ be discrete. Let x ∈ Y . Now Y −{x} is closed in τ . So x /∈ clτ (Y −{x}),
i.e. x /∈ clτ ((Y − {x}) ∩ (Y − {x})). Since τ and ρ are C-joint, it follows that
(Y − {x}, x, Y − {x}) /∈ ρ. Conversely, let (Y − {x}, x, Y − {x}) /∈ ρ for every x ∈ Y .
Since τ and ρ are C-joint, x /∈ clτ ((Y − {x}) ∩ (Y − {x})) for every x ∈ Y . So,
x /∈ clτ (Y − {x}) for every x ∈ Y . Hence for each x ∈ Y , Y − {x} is closed in τ , i.e.
{x} is open in τ for every x ∈ Y . Therefore τ is discrete.

(iv) Let τ be separable. Then there exists a countable subset say, A of Y which
is dense in τ . Then for each x ∈ Y , x ∈ clτ A. So, for each x ∈ Y , x ∈ clτ (A ∩ A).
Since τ and ρ are C-joint, it follows that (A, x,A) ∈ ρ for all x ∈ Y . Conversely, Let
there exist a countable subset A of Y for which (A, x,A) ∈ ρ for all x ∈ Y . Clearly
x ∈ clτ (A ∩A) for all x ∈ Y . Thus A is dense in τ . Hence τ is separable.

(v) Let τ be disconnected. Then there exists a proper subset A of Y which is both
open and closed in τ . Now if x ∈ Y − A, then x /∈ clτ A, i.e. x /∈ clτ (A ∩ A), i.e.
(A, x,A) /∈ ρ. similarly, (Y − A, x, Y − A) /∈ ρ for all x ∈ A. Conversely, let there
exist a non-empty proper subset A of Y such that (A, x,A) /∈ ρ for all x ∈ Y − A
and (Y −A, x, Y −A) /∈ ρ for all x ∈ A. It follows easily that A and Y −A are both
closed in τ . Thus A is both open and closed in τ . Hence τ is disconnected. □

Definition 3.2. Let (X, τ, ρ1) and (Y, σ, ρ2) be two TR-spaces. A function f :
(X, τ, ρ1)→(Y, σ, ρ2) is called C-continuous if (A, x,B) ∈ ρ1⇒(f(A), f(x), f(B)) ∈ ρ2.

Theorem 3.3. f : (X, τ) → (Y, σ) is continuous iff f : (X, τ, ρ1) → (Y, σ, ρ2) is
C-continuous.

Proof. Let f : (X, τ) → (Y, σ) be continuous. Let (A, x,B) ∈ ρ1. We will show
that (f(A), f(x), f(B)) ∈ ρ2. It suffices to show that f(x) ∈ clσ(f(A) ∩ f(B)). Let
H be any open set in σ that contains f(x). Since f is continuous, f−1(H) ∈ τ .Now
(A, x,B) ∈ ρ1 ⇒ x ∈ clτ (A∩B). Also x ∈ f−1(H) and therefore f−1(H)∩(A∩B) ̸= ∅.
Let z ∈ f−1(H)∩(A∩B). Then f(z) ∈ H and f(z) ∈ f(A∩B). So f(z) ∈ f(A)∩f(B).
ConsequentlyH∩f(A)∩f(B) ̸= ∅. SinceH is arbitrarily taken from σ, which contains
f(x), it follows that f(x) ∈ clσ(f(A) ∩ f(B)). This part is therefore proven.

Conversely, let f : (X, τ, ρ1) → (Y, σ, ρ2) be C-continuous. We will show that
f : (X, τ) → (Y, σ) is continuous. It suffices to show that for any subset A of
Y, f(clτ (A)) ⊂ clσ f(A). Let A ⊆ Y . Let x ∈ f(clτ (A)). Then there exists y ∈
clτ (A) such that f(y) = x. Now y ∈ clτ (A) ⇒ (A, y,A) ∈ ρ1. Now, since f is C-
continuous, (f(A), f(y), f(A)) ∈ ρ2. Therefore, f(y) ∈ clσ(f(A) ∩ f(A)) = clσ f(A)
i.e. x ∈ clσ f(A). It follows that f(clτ (A)) ⊆ clσ f(A). This completes the proof. □

Definition 3.4. Let (Y, τ, ρ) be a TR-space. A net {xn : n ∈ D} in Y is said to have
a c-cluster point x in Y if for any A ⊆ Y and for any n ∈ D, (A, x,A) /∈ ρ ⇒ there
exists m ∈ D such that m ≥ n and (A, xm, A) /∈ ρ.

Theorem 3.5. Let (Y, τ, ρ) be a TR-space.Then (Y, τ) is compact iff every net in Y
has a c-cluster point in Y .



C. Chattopadhyay 5

Proof. Let (Y, τ) be compact. If possible, let {xn : n ∈ D} be a net in Y that has no
c-cluster point in Y . Then for each x ∈ Y there exists Ax ⊆ Y and nx ∈ D such that
(Ax, x, Ax) /∈ ρ but for all m ∈ D with m ≥ nx we have (Ax, xm, Ax) ∈ ρ.

Now (Ax, x, Ax) /∈ ρ ⇒ x /∈ cl(Ax) for each x ∈ Y whereas

(Ax, xm, Ax) ∈ ρ1 ⇒ xm ∈ cl(Ax) for all m ∈ D with m ≥ nx. (1)

For each x ∈ X therefore there exists an open set Gx (which contains x) such that

Gx ∩Ax = ∅. (2)

Let us now consider the collection {Gx : x ∈ Y }. Since (Y, τ) is compact, there exists
a finite subcollection say, Gx1

, Gx2
, . . . , Gxk

from {Gx : x ∈ Y } such that

Y =

k⋃
i=1

Gxi
. (3)

Consider the corresponding nxi for each i = 1, 2, . . . , k. Since D is a directed set,
there exists n ≥ nxi

for all i = 1, 2, . . . , k. By (3) xn ∈ Gxj
for some j = 1, 2 . . . , k.

Also by (1), xn ∈ clAxi
for all i = 1, 2, . . . , k, so that

Gxj
∩Axi

̸= ∅ for all i = 1, 2, . . . , k. (4)

But by (2), Gx1
∩ Ax1

= ∅ , Gx2
∩ Ax2

= ∅, . . ., Gxk
∩ Axk

= ∅. This contradicts
with (4). It follows that if (Y, τ) is compact, then every net in Y has a c-cluster point
in Y .

Conversely, let (Y, τ) not be compact. Then there exists a net {xn : n ∈ D} in Y
that has no cluster point in Y . We claim that {xn : n ∈ D} has no c-cluster point in
Y . If possible, let {xn : n ∈ D} have a c-cluster point, say x, in Y . We now claim
that x is a cluster point of {xn : n ∈ D}. Let Gx be any open set in τ that contains
x. Let n ∈ D. Take A = X − Gx. Then A is closed in τ . Since x /∈ A = clA, we
have (A, x,A) /∈ ρ. Since x is a c-cluster point of {xn : n ∈ D}, there is m ∈ D such
that m ≥ n and (A, xm, A) /∈ ρ. So xm /∈ cl(A) = A = X − Gx ⇒ xm ∈ Gx. So for
n ∈ D there is m ∈ D such that m ≥ n and xm ∈ Gx. Therefore, x is a cluster point
of {xn : n ∈ D}. This is a contradiction. This completes the proof. □
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